Abstract
Cyber security has become increasingly important in today’s world widely connected by the Internet. Many important problems in the cyber security domain can be framed as optimization problems. Recently there has been much progress in applying quantum annealing to solve optimization problems in various application domains. In this article quantum annealing is shown to solve hard problems in cyber security from the perspectives of both attack and defense. In the process a few new techniques for QUBO construction are also illustrated and can potentially be used to solve problems in other application domains.
Supported by Thailand Research Fund grant number RSA6080029.
S. Kantabutra—Ineligible for the best student paper award.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agnarsson, G., Greenlaw, R., Kantabutra, S.: On cyber attacks and the maximum-weight rooted-subtree problem. Acta Cybernet. 22, 591–612 (2016)
Agnarsson, G., Greenlaw, R., Kantabutra, S.: The structure of rooted weighted trees modeling layered cyber-security systems. Acta Cybernet. 22(4), 25–59 (2016)
Altshuler, B., Krovi, H., Roland, J.: Anderson localization makes adiabatic quantum optimization fail. Proc. Natl. Acad. Sci. U.S.A. 107, 12446–50 (2010)
Baldassi, C., Zecchina, R.: Efficiency of quantum vs. classical annealing in nonconvex learning problems. Proc. Natl. Acad. Sci. 115(7), 1457–1462 (2018)
Bapst, V., Foini, L., Krzakala, F., Semerjian, G., Zamponi, F.: The quantum adiabatic algorithm applied to random optimization problems: the quantum spin glass perspective. Phys. Rep. 523(3), 127–205 (2013)
Crawford, D., Levit, A., Ghadermarzy, N., Oberoi, J.S., Ronagh, P.: Reinforcement learning using quantum Boltzmann machines, vol. 18, no. 1–2, pp. 51–74 (2018)
van Dam, W., Mosca, M., Vazirani, U.: How powerful is adiabatic quantum computation? In: Proceedings 42nd IEEE Symposium on Foundations of Computer Science, pp. 279–287 (2001)
Dickson, N., Amin, M.: Does adiabatic quantum optimization fail for NP-complete problems? Phys. Rev. Lett. 106(5), 050502 (2011)
Dixit, V., et al.: Training a quantum annealing based restricted Boltzmann machine on cybersecurity data. IEEE Trans. Emerg. Top. Comput. Intell. 6, 417–428 (2022)
Farhi, E., Goldstone, J., Gosset, D., Gutmann, S., Shor, P.: Unstructured randomness, small gaps and localization. Quantum Inf. Comput. 11(9–10), 840–854 (2011)
Finnila, A., Gomez, M., Sebenik, C., Stenson, C., Doll, J.: Quantum annealing: a new method for minimizing multidimensional functions. Chem. Phys. Lett. 219, 343–348 (1994)
Ganesan, R., Jajodia, S., Cam, H.: Optimal scheduling of cybersecurity analysts for minimizing risk. ACM Trans. Intell. Syst. Technol. 8, 1–32 (2017)
Gilyén, A., Hastings, M.B., Vazirani, U.: (Sub)Exponential advantage of adiabatic quantum computation with no sign problem, pp. 1357–1369. Association for Computing Machinery, New York (2021)
Hen, I., Young, A.: Exponential complexity of the quantum adiabatic algorithm for certain satisfiability problems. Phys. Rev. E 84, 061152 (2011)
Henderson, M., Novak, J., Cook, T.: Leveraging quantum annealing for election forecasting. J. Phys. Soc. Jpn. 88(6), 061009 (2019)
Hernandez, M., Aramon, M.: Enhancing quantum annealing performance for the molecular similarity problem. Quantum Inf. Process. 16(5), 1–27 (2017). https://doi.org/10.1007/s11128-017-1586-y
Hu, F., et al.: Quantum computing cryptography: finding cryptographic boolean functions with quantum annealing by a 2000 qubit D-wave quantum computer. Phys. Lett. A 384(10), 126214 (2020)
Hukushima, K., Nemoto, K.: Exchange Monte Carlo method and application to spin glass simulations. J. Phys. Soc. Jpn. 65(6), 1604–1608 (1996)
Jörg, T., Krzakala, F., Semerjian, G., Zamponi, F.: First-order transitions and the performance of quantum algorithms in random optimization problems. Phys. Rev. Lett. 104, 207206 (2010)
Kadowaki, T., Nishimori, H.: Quantum annealing in the transverse ising model. Phys. Rev. E 58, 5355–5363 (1998)
Keplinger, K.: Is quantum computing becoming relevant to cyber-security? Netw. Secur. 2018(9), 16–19 (2018)
Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)
Li, R., Di Felice, R., Rohs, R., Lidar, D.: Quantum annealing versus classical machine learning applied to a simplified computational biology problem. NPJ Quantum Inf. 4, 14 (2018)
Lucas, A.: Ising formulations of many np problems. Front. Phys. 2 (2014)
Mezard, M., M.A.: Information, Physics, and Computation, p. 569. Oxford University Press Inc., Oxford (2009)
Monasson, R.: Optimization problems and replica symmetry breaking in finite connectivity spin glasses. J. Phys. A: Math. Gen. 31(2), 513–529 (1998)
Monasson, R., Zecchina, R.: Statistical mechanics of the random \(k\)-satisfiability model. Phys. Rev. E 56, 1357–1370 (1997)
Mukdasanit, S., Kantabutra, S.: Attack and defense in the layered cyber-security model and their (1 \(\pm \)\({\varepsilon }\))-approximation schemes. J. Comput. Syst. Sci. 115, 54–63 (2021)
Neukart, F., Compostella, G., Seidel, C., Von Dollen, D., Yarkoni, S., Parney, B.: Traffic flow optimization using a quantum annealer. Front. ICT 4, 1–6 (2017)
Ohzeki, M., Miki, A., Miyama, M.J., Terabe, M.: Control of automated guided vehicles without collision by quantum annealer and digital devices. Front. Comput. Sci. 1, 1–9 (2019)
Okimoto, T., Ikegai, N., Inoue, K., Okada, H., Ribeiro, T., Maruyama, H.: Cyber security problem based on multi-objective distributed constraint optimization technique. In: 2013 43rd Annual IEEE/IFIP Conference on Dependable Systems and Networks Workshop (DSN-W), pp. 1–7 (2013)
Perdomo-Ortiz, A., Dickson, N., Drew-Brook, M., Rose, G., Aspuru-Guzik, A.: Finding low-energy conformations of lattice protein models by quantum annealing. Sci. Rep. 2, 571 (2012)
Rosenberg, G., Haghnegahdar, P., Goddard, P., Carr, P., Wu, K., de Prado, M.L.: Solving the optimal trading trajectory problem using a quantum annealer. IEEE J. Sel. Top. Signal Process. 10(6), 1053–1060 (2016)
Santoro, G.E., Martoňák, R., Tosatti, E., Car, R.: Theory of quantum annealing of an ising spin glass. Science 295(5564), 2427–2430 (2002)
D-Wave Systems Inc.: D-Wave Problem-Solving Handbook. D-Wave Systems Inc
Vamvoudakis, K.G., Hespanha, J., Kemmerer, R., Vigna, G.: Formulating cyber-security as convex optimization problems. In: Tarraf, D. (ed.) Control of Cyber-Physical Systems, vol. 449, pp. 85–100. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-319-01159-2_5
Venturelli, D., Marchand, D., Rojo, G.: Quantum annealing implementation of job-shop scheduling, pp. 25–34 (2016)
Martoňák, R., Santoro, G.E., Tosatti, E.: Quantum annealing of the traveling-salesman problem. Phys. Rev. E 70, 057701 (2004)
Weise, T., Zapf, M., Chiong, R., Nebro, A.J.: Why is optimization difficult? In: Chiong, R. (ed.) Nature-Inspired Algorithms for Optimisation, pp. 1–50. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00267-0_1
Zhang, Y., Malacaria, P.: Optimization-time analysis for cybersecurity. IEEE Trans. Dependable Secure Comput. 19, 2365–2383 (2022)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Kantabutra, S. (2022). Adiabatic Quantum Computation for Cyber Attack and Defense Strategies. In: Hsieh, SY., Hung, LJ., Klasing, R., Lee, CW., Peng, SL. (eds) New Trends in Computer Technologies and Applications. ICS 2022. Communications in Computer and Information Science, vol 1723. Springer, Singapore. https://doi.org/10.1007/978-981-19-9582-8_9
Download citation
DOI: https://doi.org/10.1007/978-981-19-9582-8_9
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-19-9581-1
Online ISBN: 978-981-19-9582-8
eBook Packages: Computer ScienceComputer Science (R0)