Skip to main content

DA\(^2\): Degree-Accumulated Data Augmentation on Point Clouds with Curriculum Dynamic Threshold Selection

  • Conference paper
  • First Online:
Computer Vision – ACCV 2024 (ACCV 2024)

Abstract

Conventional point cloud data augmentation methods typically employ offline transformations with predefined, randomly applied transformations. This randomness may lead to suboptimal training samples that are not suitable for the current training stage. Additionally, the predefined parameter range restricts the exploration space of augmentation, limiting the diversity of samples. This paper introduces Degree-Accumulated Data Augmentation (\(\textrm{DA}^2\)), a novel approach that accumulates augmentations to expand the exploration space beyond predefined limits. We utilize a teacher-guided auto-augmenter to prevent the generation of excessively distorted or unrecognizable samples. This method aims to generate challenging yet suitable samples, progressively increasing the difficulty to enhance the model’s robustness. Additionally, according to a student model’s ability, we propose Curriculum Dynamic Threshold Selection (CDTS) to filter overly challenging samples, allowing the model to start with high-quality objects and gradually handle more complex ones as model stability improves. Our experiments show that this framework significantly enhances accuracy across various 3D point cloud classifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning. In: Proceedings of the 26th annual international conference on machine learning. pp. 41–48 (2009)

    Google Scholar 

  2. Bonneel, N., Rabin, J., Peyré, G., Pfister, H.: Sliced and radon wasserstein barycenters of measures. Journal of Mathematical Imaging and Vision 51, 22–45 (2015)

    Article  MathSciNet  Google Scholar 

  3. Chen, Y., Hu, V.T., Gavves, E., Mensink, T., Mettes, P., Yang, P., Snoek, C.G.M.: PointMixup: Augmentation for Point Clouds. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12348, pp. 330–345. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58580-8_20

    Chapter  Google Scholar 

  4. Cheng, S., Leng, Z., Cubuk, E.D., Zoph, B., Bai, C., Ngiam, J., Song, Y., Caine, B., Vasudevan, V., Li, C., Le, Q.V., Shlens, J., Anguelov, D.: Improving 3D Object Detection Through Progressive Population Based Augmentation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12366, pp. 279–294. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58589-1_17

    Chapter  Google Scholar 

  5. Choy, C., Gwak, J., Savarese, S.: 4d spatio-temporal convnets: Minkowski convolutional neural networks. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 3075–3084 (2019)

    Google Scholar 

  6. Cubuk, E.D., Zoph, B., Mane, D., Vasudevan, V., Le, Q.V.: Autoaugment: Learning augmentation strategies from data. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 113–123 (2019)

    Google Scholar 

  7. Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.V.: Randaugment: Practical automated data augmentation with a reduced search space. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition workshops. pp. 702–703 (2020)

    Google Scholar 

  8. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. In: 2009 IEEE conference on computer vision and pattern recognition. pp. 248–255. Ieee (2009)

    Google Scholar 

  9. Ho, D., Liang, E., Chen, X., Stoica, I., Abbeel, P.: Population based augmentation: Efficient learning of augmentation policy schedules. In: International conference on machine learning. pp. 2731–2741. PMLR (2019)

    Google Scholar 

  10. Hua, B.S., Tran, M.K., Yeung, S.K.: Pointwise convolutional neural networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 984–993 (2018)

    Google Scholar 

  11. Jaritz, M., Gu, J., Su, H.: Multi-view pointnet for 3d scene understanding. In: Proceedings of the IEEE/CVF international conference on computer vision workshops. pp. 0–0 (2019)

    Google Scholar 

  12. Kim, S., Lee, S., Hwang, D., Lee, J., Hwang, S.J., Kim, H.J.: Point cloud augmentation with weighted local transformations. In: Proceedings of the IEEE/CVF international conference on computer vision. pp. 548–557 (2021)

    Google Scholar 

  13. Lee, D., Lee, J., Lee, J., Lee, H., Lee, M., Woo, S., Lee, S.: Regularization strategy for point cloud via rigidly mixed sample. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 15900–15909 (2021)

    Google Scholar 

  14. Li, R., Li, X., Heng, P.A., Fu, C.W.: Pointaugment: an auto-augmentation framework for point cloud classification. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. pp. 6378–6387 (2020)

    Google Scholar 

  15. Lim, S., Kim, I., Kim, T., Kim, C., Kim, S.: Fast autoaugment. Advances in Neural Information Processing Systems 32 (2019)

    Google Scholar 

  16. Liu, Z., Tang, H., Lin, Y., Han, S.: Point-voxel cnn for efficient 3d deep learning. Advances in neural information processing systems 32 (2019)

    Google Scholar 

  17. Ma, X., Qin, C., You, H., Ran, H., Fu, Y.: Rethinking network design and local geometry in point cloud: A simple residual mlp framework. arXiv preprint arXiv:2202.07123 (2022)

  18. Nguyen, T., Pham, Q.H., Le, T., Pham, T., Ho, N., Hua, B.S.: Point-set distances for learning representations of 3d point clouds. In: Proceedings of the IEEE/CVF international conference on computer vision. pp. 10478–10487 (2021)

    Google Scholar 

  19. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: Deep learning on point sets for 3d classification and segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 652–660 (2017)

    Google Scholar 

  20. Qi, C.R., Su, H., Nießner, M., Dai, A., Yan, M., Guibas, L.J.: Volumetric and multi-view cnns for object classification on 3d data. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 5648–5656 (2016)

    Google Scholar 

  21. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: Deep hierarchical feature learning on point sets in a metric space. Advances in neural information processing systems 30 (2017)

    Google Scholar 

  22. Qian, G., Li, Y., Peng, H., Mai, J., Hammoud, H., Elhoseiny, M., Ghanem, B.: Pointnext: Revisiting pointnet++ with improved training and scaling strategies. Adv. Neural. Inf. Process. Syst. 35, 23192–23204 (2022)

    Google Scholar 

  23. Su, H., Maji, S., Kalogerakis, E., Learned-Miller, E.: Multi-view convolutional neural networks for 3d shape recognition. In: Proceedings of the IEEE international conference on computer vision. pp. 945–953 (2015)

    Google Scholar 

  24. Suzuki, T.: Teachaugment: Data augmentation optimization using teacher knowledge. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 10904–10914 (2022)

    Google Scholar 

  25. Umam, A., Yang, C.K., Chuang, Y.Y., Chuang, J.H., Lin, Y.Y.: Point mixswap: Attentional point cloud mixing via swapping matched structural divisions. In: European Conference on Computer Vision. pp. 596–611. Springer (2022)

    Google Scholar 

  26. Uy, M.A., Pham, Q.H., Hua, B.S., Nguyen, T., Yeung, S.K.: Revisiting point cloud classification: A new benchmark dataset and classification model on real-world data. In: Proceedings of the IEEE/CVF international conference on computer vision. pp. 1588–1597 (2019)

    Google Scholar 

  27. Wang, J., Ding, L., Xu, T., Dong, S., Xu, X., Bai, L., Li, J.: Sample-adaptive augmentation for point cloud recognition against real-world corruptions. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 14330–14339 (2023)

    Google Scholar 

  28. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph cnn for learning on point clouds. ACM Transactions on Graphics (tog) 38(5), 1–12 (2019)

    Article  Google Scholar 

  29. Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J.: 3d shapenets: A deep representation for volumetric shapes. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 1912–1920 (2015)

    Google Scholar 

  30. Zhao, H., Jiang, L., Jia, J., Torr, P.H., Koltun, V.: Point transformer. In: Proceedings of the IEEE/CVF international conference on computer vision. pp. 16259–16268 (2021)

    Google Scholar 

  31. Zhou, Y., Tuzel, O.: Voxelnet: End-to-end learning for point cloud based 3d object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 4490–4499 (2018)

    Google Scholar 

Download references

Acknowledgements

This work was financially supported in part (project number: 112UA10019) by the Co-creation Platform of the Industry Academia Innovation School, NYCU, under the framework of the National Key Fields Industry-University Cooperation and Skilled Personnel Training Act, from the Ministry of Education (MOE) and industry partners in Taiwan. It is also supported in part by the National Science and Technology Council, Taiwan, under Grant NSTC-112-2221-E-A49-089-MY3, Grant NSTC-110-2221-E-A49-066-MY3, Grant NSTC-111- 2634-F-A49-010, Grant NSTC-112-2425-H-A49-001, and in part by the Higher Education Sprout Project of the National Yang Ming Chiao Tung University and the Ministry of Education (MOE), Taiwan. We sincerely thank Hon Hai Research Institute for their invaluable support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching-Chun Huang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2030 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tai, T.C., Do-Tran, NT., Le, NHL., Li, YH., Huang, CC. (2025). DA\(^2\): Degree-Accumulated Data Augmentation on Point Clouds with Curriculum Dynamic Threshold Selection. In: Cho, M., Laptev, I., Tran, D., Yao, A., Zha, H. (eds) Computer Vision – ACCV 2024. ACCV 2024. Lecture Notes in Computer Science, vol 15480. Springer, Singapore. https://doi.org/10.1007/978-981-96-0969-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-981-96-0969-7_1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-96-0968-0

  • Online ISBN: 978-981-96-0969-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy