Skip to main content

Secure Multi-party SM2 Signature Based on SPDZ Protocol

  • Conference paper
  • First Online:
Information Security and Cryptology (Inscrypt 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14526))

Included in the following conference series:

  • 530 Accesses

Abstract

Nowadays, the demand for signing and verifying data in various fields is getting higher and higher, and digital signature schemes need to be adapted to two-party or even multi-party and multi-device scenarios. To meet the needs of multi-party signature scenarios, we propose a multi-party SM2 signature scheme based on SPDZ protocol. The basic signature scheme used in this paper is the SM2 digital signature algorithm in the standard “SM2 Elliptic Curve Public Key Cryptography” of ISO/IEC14888-3, which has the advantages of high security and reliability as well as efficient signature speeds. Our scheme allows multiple participants to jointly sign a message while resisting up to \(n-1\) malicious corrupted parties in dishonest-majority settings. Compared to existing schemes against malicious adversaries, our scheme discards costly zero-knowledge proofs in favor of low-overhead MACs, which reduces the computational and communication complexity of multi-party signatures. We analyze the security and performance evaluation of the scheme, and the results show that the scheme has high efficiency while ensuring security.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_34

    Chapter  MATH  Google Scholar 

  2. Boneh, D., Gennaro, R., Goldfeder, S.: Using Level-1 homomorphic encryption to improve threshold DSA signatures for bitcoin wallet security. In: Lange, T., Dunkelman, O. (eds.) LATINCRYPT 2017. LNCS, vol. 11368, pp. 352–377. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25283-0_19

    Chapter  MATH  Google Scholar 

  3. Canetti, R.: Security and composition of multiparty cryptographic protocols. J. Cryptol. 13, 143–202 (2000)

    MathSciNet  MATH  Google Scholar 

  4. Cramer, R., Damgård, I.B., et al.: Secure multiparty computation. Cambridge University Press (2015)

    Google Scholar 

  5. Damgård, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical covertly secure MPC for dishonest majority – Or: breaking the SPDZ limits. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp. 1–18. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40203-6_1

    Chapter  Google Scholar 

  6. Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_38

    Chapter  MATH  Google Scholar 

  7. Feng, Q., Debiao, H., Min, L., Li, L.: Efficient two-party sm2 signing protocol for mobile internet. J. Comput. Res. Dev. 57(2020–10-2136), 2136 (2020). https://doi.org/10.7544/issn1000-1239.2020.20200401, https://crad.ict.ac.cn/en/article/doi/10.7544/issn1000-1239.2020.20200401

  8. Gagol, A., Kula, J., Straszak, D., Swietek, M.: Threshold ECDSA for decentralized asset custody. Cryptology ePrint Archive (2020)

    Google Scholar 

  9. Gennaro, R., Goldfeder, S.: Fast multiparty threshold ECDSA with fast trustless setup. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, pp. 1179–1194 (2018)

    Google Scholar 

  10. Gennaro, R., Goldfeder, S.: One round threshold ECDSA with identifiable abort. Cryptology ePrint Archive (2020)

    Google Scholar 

  11. Gennaro, R., Goldfeder, S., Narayanan, A.: Threshold-Optimal DSA/ECDSA signatures and an application to bitcoin wallet security. In: Manulis, M., Sadeghi, A.R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 156–174. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39555-5_9

    Chapter  MATH  Google Scholar 

  12. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Robust threshold DSS signatures. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 354–371. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9_31

    Chapter  MATH  Google Scholar 

  13. Goldreich, O.: Foundations of cryptography: Basic applications cambridge cambridge University Press 10.1017. CBO9780511721656 Google Scholar Google Scholar Cross Ref Cross Ref (2004)

    Google Scholar 

  14. Han, G., Bai, X., Geng, S., Qin, B.: Efficient two-party SM2 signing protocol based on secret sharing. J. Syst. Architect. 132, 102738 (2022)

    MATH  Google Scholar 

  15. He, D., Zhang, Y., Wang, D., Choo, K.K.R.: Secure and efficient two-party signing protocol for the identity-based signature scheme in the IEEE p1363 standard for public key cryptography. IEEE Trans. Dependable Secure Comput. 17(5), 1124–1132 (2018)

    MATH  Google Scholar 

  16. Hong, H., Sun, Z., Liu, X.: A key-insulated CP-ABE with key exposure accountability for secure data sharing in the cloud. KSII Trans. Internet Inf. Syst. 10(5), 2394 (2016)

    MATH  Google Scholar 

  17. HOU, H.X., Yang, B., ZHANG, L.N., ZHANG, M.R.: Secure two-party SM2 signature algorithm. ACTA ELECTONICA SINICA 48(1), 1 (2020)

    Google Scholar 

  18. Jie, Y., Yu, L., Li-yun, C., Wei, N.: A SM2 elliptic curve threshold signature scheme without a trusted center. KSII Trans. Internet Inf. Syst. 10(2) (2016)

    Google Scholar 

  19. Keller, M.: MP-SPDZ: A versatile framework for multi-party computation. Cryptology ePrint Archive, Report 2020/521 (2020). https://eprint.iacr.org/2020/521

  20. Lindell, Y.: Fast secure two-party ECDSA signing. J. Cryptology 34(4), 1–38 (2021). https://doi.org/10.1007/s00145-021-09409-9

    Article  MathSciNet  MATH  Google Scholar 

  21. Lindell, Y., Nof, A.: Fast secure multiparty ECDSA with practical distributed key generation and applications to cryptocurrency custody. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, pp. 1837–1854 (2018)

    Google Scholar 

  22. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    MathSciNet  MATH  Google Scholar 

  23. Shang, M., Ma, Y., Lin, J., Jing, J.: A threshold scheme for SM2 elliptic curve cryptographic algorithm. J. Cryptologic Res. 1(2), 155 (2014). 10.13868/j.cnki.jcr.000015. https://www.jcr.cacrnet.org.cn/EN/10.13868/j.cnki.jcr.000015

  24. Shoup, V.: Practical threshold signatures. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 207–220. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6_15

    Chapter  MATH  Google Scholar 

  25. Wee, H.: Threshold and revocation cryptosystems via extractable hash proofs. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 589–609. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_32

    Chapter  MATH  Google Scholar 

  26. Yin-Xue, S.U., Hai-Bo, T.: A two-party SM2 signing protocol and its application

    Google Scholar 

  27. Zhang, Y., He, D., Zhang, M., Choo, K.K.R.: A provable-secure and practical two-party distributed signing protocol for SM2 signature algorithm. Front. Comp. Sci. 14, 1–14 (2020)

    MATH  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (No. 62071280, No. 62302280), the National Natural Science Foundation of Shandong Province (No. ZR2023QF133), the Major Scientific and Technological Innovation Project of Shandong Province (No. 2020CXGC010115), and the Science and Technology SMEs Innovation Ability Enhancement Project of Shandong Province (No. 2022TSGC1018).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao Wang or Ye Su .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, X., Wang, H., Chen, J., Li, S., Sun, Y., Su, Y. (2024). Secure Multi-party SM2 Signature Based on SPDZ Protocol. In: Ge, C., Yung, M. (eds) Information Security and Cryptology. Inscrypt 2023. Lecture Notes in Computer Science, vol 14526. Springer, Singapore. https://doi.org/10.1007/978-981-97-0942-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-0942-7_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-0941-0

  • Online ISBN: 978-981-97-0942-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy