Abstract
Nowadays, the demand for signing and verifying data in various fields is getting higher and higher, and digital signature schemes need to be adapted to two-party or even multi-party and multi-device scenarios. To meet the needs of multi-party signature scenarios, we propose a multi-party SM2 signature scheme based on SPDZ protocol. The basic signature scheme used in this paper is the SM2 digital signature algorithm in the standard “SM2 Elliptic Curve Public Key Cryptography” of ISO/IEC14888-3, which has the advantages of high security and reliability as well as efficient signature speeds. Our scheme allows multiple participants to jointly sign a message while resisting up to \(n-1\) malicious corrupted parties in dishonest-majority settings. Compared to existing schemes against malicious adversaries, our scheme discards costly zero-knowledge proofs in favor of low-overhead MACs, which reduces the computational and communication complexity of multi-party signatures. We analyze the security and performance evaluation of the scheme, and the results show that the scheme has high efficiency while ensuring security.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1_34
Boneh, D., Gennaro, R., Goldfeder, S.: Using Level-1 homomorphic encryption to improve threshold DSA signatures for bitcoin wallet security. In: Lange, T., Dunkelman, O. (eds.) LATINCRYPT 2017. LNCS, vol. 11368, pp. 352–377. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25283-0_19
Canetti, R.: Security and composition of multiparty cryptographic protocols. J. Cryptol. 13, 143–202 (2000)
Cramer, R., Damgård, I.B., et al.: Secure multiparty computation. Cambridge University Press (2015)
Damgård, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical covertly secure MPC for dishonest majority – Or: breaking the SPDZ limits. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp. 1–18. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40203-6_1
Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_38
Feng, Q., Debiao, H., Min, L., Li, L.: Efficient two-party sm2 signing protocol for mobile internet. J. Comput. Res. Dev. 57(2020–10-2136), 2136 (2020). https://doi.org/10.7544/issn1000-1239.2020.20200401, https://crad.ict.ac.cn/en/article/doi/10.7544/issn1000-1239.2020.20200401
Gagol, A., Kula, J., Straszak, D., Swietek, M.: Threshold ECDSA for decentralized asset custody. Cryptology ePrint Archive (2020)
Gennaro, R., Goldfeder, S.: Fast multiparty threshold ECDSA with fast trustless setup. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, pp. 1179–1194 (2018)
Gennaro, R., Goldfeder, S.: One round threshold ECDSA with identifiable abort. Cryptology ePrint Archive (2020)
Gennaro, R., Goldfeder, S., Narayanan, A.: Threshold-Optimal DSA/ECDSA signatures and an application to bitcoin wallet security. In: Manulis, M., Sadeghi, A.R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 156–174. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39555-5_9
Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Robust threshold DSS signatures. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 354–371. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68339-9_31
Goldreich, O.: Foundations of cryptography: Basic applications cambridge cambridge University Press 10.1017. CBO9780511721656 Google Scholar Google Scholar Cross Ref Cross Ref (2004)
Han, G., Bai, X., Geng, S., Qin, B.: Efficient two-party SM2 signing protocol based on secret sharing. J. Syst. Architect. 132, 102738 (2022)
He, D., Zhang, Y., Wang, D., Choo, K.K.R.: Secure and efficient two-party signing protocol for the identity-based signature scheme in the IEEE p1363 standard for public key cryptography. IEEE Trans. Dependable Secure Comput. 17(5), 1124–1132 (2018)
Hong, H., Sun, Z., Liu, X.: A key-insulated CP-ABE with key exposure accountability for secure data sharing in the cloud. KSII Trans. Internet Inf. Syst. 10(5), 2394 (2016)
HOU, H.X., Yang, B., ZHANG, L.N., ZHANG, M.R.: Secure two-party SM2 signature algorithm. ACTA ELECTONICA SINICA 48(1), 1 (2020)
Jie, Y., Yu, L., Li-yun, C., Wei, N.: A SM2 elliptic curve threshold signature scheme without a trusted center. KSII Trans. Internet Inf. Syst. 10(2) (2016)
Keller, M.: MP-SPDZ: A versatile framework for multi-party computation. Cryptology ePrint Archive, Report 2020/521 (2020). https://eprint.iacr.org/2020/521
Lindell, Y.: Fast secure two-party ECDSA signing. J. Cryptology 34(4), 1–38 (2021). https://doi.org/10.1007/s00145-021-09409-9
Lindell, Y., Nof, A.: Fast secure multiparty ECDSA with practical distributed key generation and applications to cryptocurrency custody. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, pp. 1837–1854 (2018)
Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
Shang, M., Ma, Y., Lin, J., Jing, J.: A threshold scheme for SM2 elliptic curve cryptographic algorithm. J. Cryptologic Res. 1(2), 155 (2014). 10.13868/j.cnki.jcr.000015. https://www.jcr.cacrnet.org.cn/EN/10.13868/j.cnki.jcr.000015
Shoup, V.: Practical threshold signatures. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 207–220. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6_15
Wee, H.: Threshold and revocation cryptosystems via extractable hash proofs. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 589–609. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_32
Yin-Xue, S.U., Hai-Bo, T.: A two-party SM2 signing protocol and its application
Zhang, Y., He, D., Zhang, M., Choo, K.K.R.: A provable-secure and practical two-party distributed signing protocol for SM2 signature algorithm. Front. Comp. Sci. 14, 1–14 (2020)
Acknowledgment
This work was supported by the National Natural Science Foundation of China (No. 62071280, No. 62302280), the National Natural Science Foundation of Shandong Province (No. ZR2023QF133), the Major Scientific and Technological Innovation Project of Shandong Province (No. 2020CXGC010115), and the Science and Technology SMEs Innovation Ability Enhancement Project of Shandong Province (No. 2022TSGC1018).
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Li, X., Wang, H., Chen, J., Li, S., Sun, Y., Su, Y. (2024). Secure Multi-party SM2 Signature Based on SPDZ Protocol. In: Ge, C., Yung, M. (eds) Information Security and Cryptology. Inscrypt 2023. Lecture Notes in Computer Science, vol 14526. Springer, Singapore. https://doi.org/10.1007/978-981-97-0942-7_5
Download citation
DOI: https://doi.org/10.1007/978-981-97-0942-7_5
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-97-0941-0
Online ISBN: 978-981-97-0942-7
eBook Packages: Computer ScienceComputer Science (R0)