Skip to main content

Automatic Quantum Multi-collision Distinguishers and Rebound Attacks with Triangulation Algorithm

  • Conference paper
  • First Online:
Information Security and Privacy (ACISP 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14896))

Included in the following conference series:

  • 300 Accesses

Abstract

In EUROCRYPT 2020, Hosoyamada and Sasaki found that differential paths with probability \(2^{-2n/3}\) can be useful in quantum collision attacks, v.s. \(2^{-n/2}\) for classical collision attacks. This observation led to attacks for more rounds on some AES-like hash functions. In this paper, we quantize the multi-collision distinguisher proposed by Biryukov, Khovratovich, and Nikolić at CRYPTO 2009, and propose quantum multi-collision distinguishers. We use CP-tool to automatically search for the configurations for multi-collision distinguishers and rebound attacks by taking into account related-key/single-key differentials of the underlying block cipher. We apply our method to AES-like primitives including block ciphers AES, Rijndael, Saturnin and AES-hashing modes AES-DM and AES-HCF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Here we assume use of \(O_f\), alternative oracle could be \(O_{\omega }\) which flips the phase of good states: \(O_{\omega }|x\rangle = (-1)^{f(x)}|x\rangle \).

References

  1. Baek, S., Cho, S., Kim, J.: Quantum cryptanalysis of the full AES-256-based Davies-Meyer, Hirose and MJH hash functions. Quant. Inf. Process. 21(5), 1–32 (2022)

    Article  MathSciNet  Google Scholar 

  2. Biryukov, A., Khovratovich, D., Nikolić, I.: Distinguisher and related-key attack on the full AES-256. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 231–249. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_14

    Chapter  Google Scholar 

  3. Biryukov, A., Nikolić, I.: Automatic search for related-key differential characteristics in byte-oriented block ciphers: application to AES, Camellia, Khazad and others. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 322–344. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_17

    Chapter  Google Scholar 

  4. Boneh, D., Dagdelen, Ö., Fischlin, M., Lehmann, A., Schaffner, C., Zhandry, M.: Random Oracles in a quantum world. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 41–69. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_3

    Chapter  Google Scholar 

  5. Brassard, G., HØyer, P., Tapp, A.: Quantum cryptanalysis of hash and claw-free functions. In: Lucchesi, C.L., Moura, A.V. (eds.) LATIN 1998. LNCS, vol. 1380, pp. 163–169. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054319

    Chapter  Google Scholar 

  6. Canteaut, A., et al.: A note on related-key attacks on Saturnin (2020). https://project.inria.fr/saturnin/files/2020/11/Note-RK-1.pdf

  7. Canteaut, A., et al.: Saturnin: a suite of lightweight symmetric algorithms for post-quantum security. IACR Trans. Symmetric Cryptol. 2020(S1), 160–207 (2020)

    Article  MathSciNet  Google Scholar 

  8. Chailloux, A., Naya-Plasencia, M., Schrottenloher, A.: An efficient quantum collision search algorithm and implications on symmetric cryptography. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part II. LNCS, vol. 10625, pp. 211–240. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9_8

    Chapter  Google Scholar 

  9. Daemen, J., Rijmen, V.: The Design of Rijndael: AES - The Advanced Encryption Standard. Information Security and Cryptography. Springer, Heidelberg (2002). https://doi.org/10.1007/978-3-662-04722-4

  10. Dong, X., Guo, J., Li, S., Pham, P.: Triangulating rebound attack on AES-like hashing. In: Dodis, Y., Shrimpton, T. (eds.) Proceedings of the 42nd Annual International Cryptology Conference on Advances in Cryptology, CRYPTO 2022, Part I. LNCS, Santa Barbara, CA, USA, 15–18 August 2022, vol. 13507, pp. 94–124. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-15802-5_4

  11. Dong, X., Li, S., Pham, P.: Chosen-key distinguishing attacks on full AES-192, AES-256, Kiasu-BC, and more. IACR Cryptology ePrint Archive, Paper 2023/1095 (2023). https://eprint.iacr.org/2023/1095

  12. Dong, X., Sun, S., Shi, D., Gao, F., Wang, X., Hu, L.: Quantum collision attacks on AES-like hashing with low quantum random access memories. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part II. LNCS, vol. 12492, pp. 727–757. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64834-3_25

    Chapter  Google Scholar 

  13. Fouque, P.-A., Jean, J., Peyrin, T.: Structural evaluation of AES and chosen-key distinguisher of 9-round. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 183–203. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_11

    Chapter  Google Scholar 

  14. Gérault, D., Lafourcade, P.: Related-key cryptanalysis of Midori. In: Dunkelman, O., Sanadhya, S.K. (eds.) INDOCRYPT 2016. LNCS, vol. 10095, pp. 287–304. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49890-4_16

    Chapter  Google Scholar 

  15. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Miller, G.L. (ed.) Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, Philadelphia, Pennsylvania, USA, 22–24 May 1996, pp. 212–219. ACM (1996). https://doi.org/10.1145/237814.237866

  16. Gérault, D., Lafourcade, P., Minier, M., Solnon, C.: Computing AES related-key differential characteristics with constraint programming. Artif. Intell. 278, 103183 (2020). https://www.sciencedirect.com/science/article/pii/S0004370218303631

  17. Gerault, D., Minier, M., Solnon, C.: Constraint programming models for chosen key differential cryptanalysis. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 584–601. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44953-1_37

    Chapter  Google Scholar 

  18. Hosoyamada, A., Sasaki, Yu.: Finding hash collisions with quantum computers by using differential trails with smaller probability than birthday bound. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020, Part II. LNCS, vol. 12106, pp. 249–279. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2_9

    Chapter  Google Scholar 

  19. Hosoyamada, A., Sasaki, Y.: Quantum collision attacks on reduced SHA-256 and SHA-512. Cryptology ePrint Archive, Report 2021/292 (2021). https://eprint.iacr.org/2021/292

  20. Kaplan, M., Leurent, G., Leverrier, A., Naya-Plasencia, M.: Breaking symmetric cryptosystems using quantum period finding. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part II. LNCS, vol. 9815, pp. 207–237. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5_8

    Chapter  Google Scholar 

  21. Khovratovich, D., Biryukov, A., Nikolic, I.: Speeding up collision search for byte-oriented hash functions. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 164–181. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00862-7_11

    Chapter  Google Scholar 

  22. Kumar Chauhan, A., Kumar, A., Kumar Sanadhya, S.: Quantum free-start collision attacks on double block length hashing with round-reduced AES-256. IACR Trans. Symmetric Cryptol. 2021(1), 316–336 (2021), https://tosc.iacr.org/index.php/ToSC/article/view/8841

  23. Kuwakado, H., Morii, M.: Security on the quantum-type Even-Mansour cipher, pp. 312–316, January 2012

    Google Scholar 

  24. Kuwakado, H., Morii, M.: Quantum distinguisher between the 3-round Feistel cipher and the random permutation. In: 2010 IEEE International Symposium on Information Theory, pp. 2682–2685 (2010)

    Google Scholar 

  25. Leander, G., May, A.: Grover meets Simon – quantumly attacking the FX-construction. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017, Part II. LNCS, vol. 10625, pp. 161–178. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70697-9_6

    Chapter  Google Scholar 

  26. Li, S., Liu, G., Pham, P.: Rebound attacks on SFSKINNY hashing with automatic tools. In: Yuan, X., Bai, G., Alcaraz, C., Majumdar, S. (eds.) Proceedings of the 16th International Conference on Network and System Security, NSS 2022, Denarau Island, Fiji, 9–12 December 2022. LNCS, vol. 13787, pp. 649–666. Springer (2022). https://doi.org/10.1007/978-3-031-23020-2_37

  27. Liu, Q., Zhandry, M.: On finding quantum multi-collisions. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019, Part III. LNCS, vol. 11478, pp. 189–218. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4_7

    Chapter  Google Scholar 

  28. Mendel, F., Rechberger, C., Schläffer, M., Thomsen, S.S.: The rebound attack: cryptanalysis of reduced Whirlpool and Grøstl. In: Dunkelman, O. (ed.) FSE 2009. LNCS, vol. 5665, pp. 260–276. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03317-9_16

    Chapter  Google Scholar 

  29. National Institute for Standards and Technology, USA: Post-Quantum Cryptography Standardization (2017). https://csrc.nist.gov/projects/post-quantum-cryptography

  30. Patarin, J.: A proof of security in O(2n) for the Xor of Two Random Permutations. In: Safavi-Naini, R. (ed.) ICITS 2008. LNCS, vol. 5155, pp. 232–248. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85093-9_22

    Chapter  Google Scholar 

  31. Pollard, J.M.: A Monte Carlo method for factorization. BIT Numer. Math. 15(3), 331–334 (1975). https://doi.org/10.1007/BF01933667

    Article  MathSciNet  Google Scholar 

  32. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: 35th Annual Symposium on Foundations of Computer Science, Santa Fe, NM, USA, 20–22 November 1994, pp. 124–134. IEEE Computer Society Press (1994)

    Google Scholar 

  33. Simon, D.R.: On the power of quantum computation. SIAM J. Comput. 26(5), 1474–1483 (1997). https://doi.org/10.1137/S0097539796298637

    Article  MathSciNet  Google Scholar 

  34. Sun, S., et al.: Analysis of AES, SKINNY, and others with constraint programming. IACR Trans. Symmetric Cryptol. 2017(1), 281–306 (2017)

    Article  Google Scholar 

  35. Suzuki, K., Tonien, D., Kurosawa, K., Toyota, K.: Birthday paradox for multi-collisions. In: Rhee, M.S., Lee, B. (eds.) ICISC 2006. LNCS, vol. 4296, pp. 29–40. Springer, Heidelberg (2006). https://doi.org/10.1007/11927587_5

    Chapter  Google Scholar 

  36. van Oorschot, P.C., Wiener, M.J.: Parallel Collision Search with Cryptanalytic Applications. J. Cryptol. 12(1), 1–28 (1999)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We would like to thank the anonymous reviewers of ACISP for their valuable comments and suggestions. This research is partially supported by the National Key R &D Program of China (Grants No. 2022YFB2701900) and Ministry of Education in Singapore under Grants RG93/23. Zhenzhen Bao is supported by the National Key R &D Program of China (No. 2023YFA1011200) and the National Natural Science Foundation of China (No. 62372262).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shun Li .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 566 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bao, Z., Guo, J., Li, S., Pham, P. (2024). Automatic Quantum Multi-collision Distinguishers and Rebound Attacks with Triangulation Algorithm. In: Zhu, T., Li, Y. (eds) Information Security and Privacy. ACISP 2024. Lecture Notes in Computer Science, vol 14896. Springer, Singapore. https://doi.org/10.1007/978-981-97-5028-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-5028-3_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-5027-6

  • Online ISBN: 978-981-97-5028-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy