Skip to main content

GENET: Unleashing the Power of Side Information for Recommendation via Hypergraph Pre-training

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2024)

Abstract

Integrating side information in recommendation systems to address user feedback sparsity has gained significant research interest. However, existing models face challenges in generalization across different domains and types of side information. Specifically, two unresolved challenges are (1) the diverse formats of side information, including text sequences and numerical features, and (2) the challenge of measuring diverse correlations in side information beyond pairwise relationships. In this paper, we introduce \(\texttt {GENET} \) (Generalized hypErgraph pretraiNing on sidE informaTion), that pre-trains user and item representations on feedback-irrelevant side information and fine-tunes the representations on user feedback data. GENET utilizes pre-training to prevent side information from overshadowing critical feedback signals. It employs a hypergraph framework to accommodate various types of diverse side information. During pre-training, GENET integrates the task for hyperlink prediction by a unique strategy to enhance pre-training robustness by perturbing positive samples while maintaining high-order relations. Extensive experiments demonstrate that GENET exhibits strong generalization capabilities, outperforming the SOTA method by up to \(38\%\) in TOP-N recommendation on various datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/XMUDM/GENET/

References

  1. Fang, Y., Si, L.: Matrix co-factorization for recommendation with rich side information and implicit feedback. In: Proceedings of the 2nd International Workshop on Information Heterogeneity and Fusion in Recommender Systems. pp. 65–69 (2011)

    Google Scholar 

  2. Feng, J., Li, Y., Zhang, C., Sun, F., Meng, F., Guo, A., Jin, D.: Deepmove: Predicting human mobility with attentional recurrent networks. In: WWW. pp. 1459–1468 (2018)

    Google Scholar 

  3. Feng, Y., You, H., Zhang, Z., Ji, R., Gao, Y.: Hypergraph neural networks. In: AAAI. pp. 3558–3565 (2019)

    Google Scholar 

  4. Feng, Y., You, H., Zhang, Z., Ji, R., Gao, Y.: Hypergraph neural networks. In: AAAI. vol. 33, pp. 3558–3565 (2019)

    Google Scholar 

  5. Gao, Y., Feng, Y., Ji, S., Ji, R.: Hgnn\(^{+}\): General hypergraph neural networks. IEEE Transactions on Pattern Analysis and Machine Intelligence (2022)

    Google Scholar 

  6. He, X., Deng, K., Wang, X., Li, Y., Zhang, Y., Wang, M.: Lightgcn: Simplifying and powering graph convolution network for recommendation. In: SIGIR. pp. 639–648 (2020)

    Google Scholar 

  7. Li, H., Li, L., Xv, G., Lin, C., Li, K., Jiang, B.: Spex: A generic framework for enhancing neural social recommendation. TOIS pp. 1–33 (2021)

    Google Scholar 

  8. Liu, T., Wang, Z., Tang, J., Yang, S., Huang, G.Y., Liu, Z.: Recommender systems with heterogeneous side information. In: The world wide web conference. pp. 3027–3033 (2019)

    Google Scholar 

  9. Liu, Z., Yu, X., Fang, Y., Zhang, X.: Graphprompt: Unifying pre-training and downstream tasks for graph neural networks. In: WWW. pp. 417–428 (2023)

    Google Scholar 

  10. Lu, Y., Jiang, X., Fang, Y., Shi, C.: Learning to pre-train graph neural networks. In: AAAI. vol. 35, pp. 4276–4284 (2021)

    Google Scholar 

  11. McAuley, J., Targett, C., Shi, Q., Van Den Hengel, A.: Image-based recommendations on styles and substitutes. In: SIGIR. pp. 43–52 (2015)

    Google Scholar 

  12. Pfadler, A., Zhao, H., Wang, J., Wang, L., Huang, P., Lee, D.L.: Billion-scale recommendation with heterogeneous side information at taobao. In: ICDE. pp. 1667–1676. IEEE (2020)

    Google Scholar 

  13. Rao, X., Chen, L., Liu, Y., Shang, S., Yao, B., Han, P.: Graph-flashback network for next location recommendation. In: KDD. pp. 1463–1471 (2022)

    Google Scholar 

  14. Sun, F., Liu, J., Wu, J., Pei, C., Lin, X., Ou, W., Jiang, P.: Bert4rec: Sequential recommendation with bidirectional encoder representations from transformer. In: CIKM. pp. 1441–1450 (2019)

    Google Scholar 

  15. Tu, K., Cui, P., Wang, X., Wang, F., Zhu, W.: Structural deep embedding for hyper-networks. In: AAAI. vol. 32 (2018)

    Google Scholar 

  16. Wang, J., Huang, P., Zhao, H., Zhang, Z., Zhao, B., Lee, D.L.: Billion-scale commodity embedding for e-commerce recommendation in alibaba. In: KDD. pp. 839–848 (2018)

    Google Scholar 

  17. Wang, X., He, X., Wang, M., Feng, F., Chua, T.S.: Neural graph collaborative filtering. In: SIGIR. pp. 165–174 (2019)

    Google Scholar 

  18. Wu, J., Wang, X., Feng, F., He, X., Chen, L., Lian, J., Xie, X.: Self-supervised graph learning for recommendation. In: SIGIR. pp. 726–735 (2021)

    Google Scholar 

  19. Xia, L., Huang, C., Shi, J., Xu, Y.: Graph-less collaborative filtering. In: WWW. pp. 17–27 (2023)

    Google Scholar 

  20. Xia, L., Huang, C., Xu, Y., Zhao, J., Yin, D., Huang, J.: Hypergraph contrastive collaborative filtering. In: SIGIR

    Google Scholar 

  21. Yang, D., Fankhauser, B., Rosso, P., Cudre-Mauroux, P.: Location prediction over sparse user mobility traces using rnns. In: IJCAI. pp. 2184–2190 (2020)

    Google Scholar 

  22. Yin, H., Cui, B., Chen, L., Hu, Z., Zhang, C.: Modeling location-based user rating profiles for personalized recommendation. TKDD 9(3), 1–41 (2015)

    Article  Google Scholar 

  23. Zhao, F., Xiao, M., Guo, Y.: Predictive collaborative filtering with side information. In: IJCAI. pp. 2385–2391 (2016)

    Google Scholar 

  24. Zhou, K., Wang, H., Zhao, W.X., Zhu, Y., Wang, S., Zhang, F., Wang, Z., Wen, J.R.: S3-rec: Self-supervised learning for sequential recommendation with mutual information maximization. In: CIKM. pp. 1893–1902 (2020)

    Google Scholar 

  25. Zhou, X.: A tale of two graphs: Freezing and denoising graph structures for multimodal recommendation. arXiv preprint arXiv:2211.06924 (2022)

Download references

Acknowledgements

Chen Lin is the corresponding author. Chen Lin is supported by the National Key R&D Program of China (No. 2022ZD0160501), and the Natural Science Foundation of China (No.62372390)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, Y., Zhao, Q., Lin, C., Zhang, Z., Zhu, X., Su, J. (2025). GENET: Unleashing the Power of Side Information for Recommendation via Hypergraph Pre-training. In: Onizuka, M., et al. Database Systems for Advanced Applications. DASFAA 2024. Lecture Notes in Computer Science, vol 14852. Springer, Singapore. https://doi.org/10.1007/978-981-97-5555-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-5555-4_24

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-5554-7

  • Online ISBN: 978-981-97-5555-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy