Abstract
Hyperspectral imaging provides new chances for face recognition by improved discrimination in the spectral dimension. In this paper, we investigate hyperspectral face recognition by studying twenty-four existing 2D face recognition methods in combination with collaborate representation-based classifier (CRC). Since hyperspectral face data cubes contain significant amount of noise, we perform denoising on hyperspectral face data cubes by means of minimum noise fraction and video block matching 3D filtering. We crop the face images by a bounding box and use this bounding box image to classify the testing faces. We also conduct voting from the CRC output to decide the label of the unknown face cubes. Experiments show that histogram of oriented gradients achieves 100% correct classification rate for the CMU-HSFD dataset and local binary patterns obtain 96.8% correct classification rate for the PolyU-HSFD dataset.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Di, W., Zhang, L., Zhang, D., Pan, Q.: Studies on hyperspectral face recognition in visible spectrum with feature band selection. IEEE Trans. Syst. Man Cybern. A: Syst. Hum. 40(6), 1354–1361 (2010)
PolyU-HSFD. http://www4.comp.polyu.edu.hk/~biometrics/. Accessed 29 July 2015
Pan, Z., Healey, G., Prasad, M., Tromberg, B.: Face recognition in hyperspectral images. IEEE Trans. Pattern Anal. Mach. Intell. 25(12), 1552–1560 (2003)
CMU-HSFD. http://www.consortium.ri.cmu.edu/hsagree/index.cgi. Accessed 29 July 2015
Shen, L., Zheng, S.: Hyperspectral face recognition using 3D Gabor wavelets. In: International Conference on Pattern Recognition, pp. 1574–157 (2012)
Uzair, M., Mahmood, A., Mian, A.: Hyperspectral face recognition with spatiospectral information fusion and PLS regression. IEEE Trans. Image Process. 24(3), 1127–1137 (2015)
Turk, M., Pentland, A.: Face recognition using eigenfaces. In: IEEE International Conference Computer Vision and Pattern Recognition, pp. 586–591 (1991)
Ahonen, T., Hadid, A., Pietikainen, M.: Face recognition with local binary pattern. In: Proceedings of the 8th European Conference on Computer Vision, pp. 469–481 (2004)
Chen, G.Y., Sun, W., Xie, W.F.: Hyperspectral face recognition using log-polar Fourier features and collaborative representation-based voting classifiers. IET Biomet. 6(1), 36–42 (2017)
Andersson, F.: Fast inversion of the Radon transform using log-polar coordinates and partial back-projections. SIAM J. Appl. Math. 65, 818–837 (2005)
Sun, S., Zhao, H., Jin, B.: Robust tensor preserving projection for multispectral face recognition. Math. Probl. Eng. 597245 (2014)
Wang, H., Bau, T.C., Healey, G.: Expression-invariant face recognition in hyperspectral images. Opt. Eng. 53(10), 103102 (2014)
Pan, Z., Healey, G., Tromberg, B.: Hyperspectral face recognition under unknown illumination. Opt. Eng. 46(7), 077201 (2007)
Sharma, V., Gool, L.V.: Image-level classification in hyperspectral images using feature descriptors, with application to face recognition. Submitted to Computer Vision and Pattern Recognition, 11 May 2016. http://arxiv.org/pdf/1605.03428.pdf
Vinayak, B., Payal, M.: Hyperspectral face recognition using multidimensional clustering on hyperspectral face images. LAP Lambert Academic Publishing (2014)
Chen, G.Y., Xie, W.F.: Hyperspectral face recognition with minimum noise fraction, histogram of oriented gradient features and collaborative representation-based classifier. J. Intell. Fuzzy Syst. 37, 635–643 (2019)
Chen, G.Y., Li, C.J., Sun, W.: Hyperspectral face recognition via feature extraction and CRC-based classifier. IET Image Proc. 11(4), 266–272 (2017)
Bastanfard, A., Bastanfard, O., Takahashi, H., Nakajima, M.: Toward anthropometric simulation of face rejuvenation and skin cosmetics. Comput. Anim. Virtual Worlds 15, 347–352 (2004)
Bastanfard, A., Takahashi, H., Nakajima, M.: Toward E-appearance of human face and hair by age, expression and rejuvenation. In: International Conference on Cyberworlds. Tokyo, Japan (2004)
Dehshibi, M.M., Bastanfard, A.: A new algorithm for age recognition from facial images. Signal Process. 90(8), 2431–2444 (2010)
Chen, G.Y., Krzyzak, A., Xie, W.F.: Hyperspectral face recognition with histogram of oriented gradient features and collaborate representation-based classifier. Multimedia Tools Appl. 81(2), 2299–2310 (2022)
Tan, X., Triggs, B.: Enhanced local texture sets for face recognition under difficult lighting conditions. IEEE Trans. Image Process. 19(6), 1635–1650 (2010)
Heusch, G., Cardinaux, F., Marcel, S., Lighting normalization algorithms for face verification, IDIAP-com 05-03. March 2005
Struc, V., Pavesic, N.: Illumination invariant face recognition by non-local smoothing. In: Proceedings of BIOID MultiComm, LNCS 5707, pp. 1–8. Springer, September 2009
Park, Y.K., Park, S.L., Kim, J.K.: Retinex method based on adaptive smoothing for illumination invariant face recognition. Signal Process. 88(8), 1929–1945 (2008)
Gross, R., Brajovic, V.: An image preprocessing algorithm for illumination invariant face recognition. In: Proceedings of the 4th International Conference on Audio- and Video-Based Biometric Personal Authentication, AVPBA 2003, pp. 10–18 (2003)
Chen, W., Er, M.J., Wu, S.: Illumination compensation and normalization for robust face recognition Using Discrete Cosine Transform in Logarithmic Domain. IEEE Trans. Syst. Man Cybern. Part B 36(2), 458–466 (2006)
Oppenheim, A.V., Schafer, R.W., Stockham, T.G.: Nonlinear filtering of multiplied and convolved signals. Proc. IEEE 56(8), 1264–1291 (1968)
Jabson, D.J., Rahmann, Z., Woodell, G.A.: A multiscale Retinex for bridging the gap between color images and the human observations of scenes. IEEE Trans. Image Process. 6(7), 897–1056 (1997)
Wang, H., Li, S. Z., Wang, Y., Zhang, J.: Self quotient image for face recognition. In: Proceedings of the International Conference on Pattern Recognition, pp. 1397–1400 (2004)
Freeman, W.T., Adelson, E.H.: The design and use of steerable filters. IEEE Trans. Pattern Anal. Mach. Intell. 13(9), 891–906 (1991)
Zhang, T., et al.: Multiscale facial structure representation for face recognition under varying illumination. Pattern Recogn. 42(2), 252–258 (2009)
Du, S., Ward, R.K.: Adaptive region-based image enhancement method for robust face recognition under variable illumination conditions. IEEE Trans. Circuits Syst. Video Technol. 20(9), 1165–1175 (2010)
Davidson, M.W., Abramowitz, M.: Molecular expressions microscopy primer: digital image processing – Difference of Gaussians Edge Enhancement Algorithm, Olympus America Inc., and Florida State University
Zhang, T., Tang, Y.Y., Fang, B., Shang, Z., Liu, X.: Face recognition under varying illumination using gradientfaces. IEEE Trans. Image Process. 18(11), 2599–2606 (2009)
Xie, X., Zheng, W.S., Lai, J., Yuen, P.C., Suen, C.Y.: Normalization of face illumination based on large-and small-scale features. IEEE Trans. Image Process. 20(7), 1807–1821 (2011)
Wang, B., Li, W., Liao, Q.: Illumination normalization based on Weber’s law with application to face recognition. IEEE Signal Process. Lett. 18(8), 462–465 (2011)
Green, A.A., Berman, M., Switzer, P., Craig, M.D.: A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Trans. Geosci. Remote Sens. 26(1), 65–74 (1988)
Lee, J.B., Woodyatt, A.S., Berman, M.: Enhancement of high spectral resolution remote sensing data by a noise-adjusted principal component transform. IEEE Trans. Geosci. Remote Sens. 28(3), 295–304 (1990)
Dabov, K., Foi, A., Egiazarian, K.: Video denoising by sparse 3D transform-domain collaborative filtering. In: Proceedings of the 15th European Signal Processing Conference, EUSIPCO 2007. Poznan, Poland (2007)
Dalal, N., Triggs. B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 886–893 (2005)
Wright, J.A., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227 (2009)
Zhang, L., Yang, M., Feng, X.: Sparse representation or collaborative representation: which helps face recognition? In: IEEE International Conference on Computer Vision, pp. 471–478 (2011)
Masayuki Tanka’s Matlab code for face parts detection. https://www.mathworks.com/matlabcentral/fileexchange/36855-face-parts-detection. Accessed 18 August 2016
Abdi, H.: Partial least squares regression and projection on latent structure regression (PLS-Regression), Wiley Interdisciplinary Reviews: Computational Statistics, vol. 2, pp. 97–106 (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Chen, G.Y., Xie, W., Krzyzak, A. (2024). Hyperspectral Face Recognition via Existing 2D Face Recognition Methods. In: Huang, DS., Zhang, X., Guo, J. (eds) Advanced Intelligent Computing Technology and Applications. ICIC 2024. Lecture Notes in Computer Science, vol 14866. Springer, Singapore. https://doi.org/10.1007/978-981-97-5594-3_2
Download citation
DOI: https://doi.org/10.1007/978-981-97-5594-3_2
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-97-5593-6
Online ISBN: 978-981-97-5594-3
eBook Packages: Computer ScienceComputer Science (R0)