Skip to main content

Hyperspectral Face Recognition via Existing 2D Face Recognition Methods

  • Conference paper
  • First Online:
Advanced Intelligent Computing Technology and Applications (ICIC 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14866))

Included in the following conference series:

  • 411 Accesses

Abstract

Hyperspectral imaging provides new chances for face recognition by improved discrimination in the spectral dimension. In this paper, we investigate hyperspectral face recognition by studying twenty-four existing 2D face recognition methods in combination with collaborate representation-based classifier (CRC). Since hyperspectral face data cubes contain significant amount of noise, we perform denoising on hyperspectral face data cubes by means of minimum noise fraction and video block matching 3D filtering. We crop the face images by a bounding box and use this bounding box image to classify the testing faces. We also conduct voting from the CRC output to decide the label of the unknown face cubes. Experiments show that histogram of oriented gradients achieves 100% correct classification rate for the CMU-HSFD dataset and local binary patterns obtain 96.8% correct classification rate for the PolyU-HSFD dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Di, W., Zhang, L., Zhang, D., Pan, Q.: Studies on hyperspectral face recognition in visible spectrum with feature band selection. IEEE Trans. Syst. Man Cybern. A: Syst. Hum. 40(6), 1354–1361 (2010)

    Article  Google Scholar 

  2. PolyU-HSFD. http://www4.comp.polyu.edu.hk/~biometrics/. Accessed 29 July 2015

  3. Pan, Z., Healey, G., Prasad, M., Tromberg, B.: Face recognition in hyperspectral images. IEEE Trans. Pattern Anal. Mach. Intell. 25(12), 1552–1560 (2003)

    Article  Google Scholar 

  4. CMU-HSFD. http://www.consortium.ri.cmu.edu/hsagree/index.cgi. Accessed 29 July 2015

  5. Shen, L., Zheng, S.: Hyperspectral face recognition using 3D Gabor wavelets. In: International Conference on Pattern Recognition, pp. 1574–157 (2012)

    Google Scholar 

  6. Uzair, M., Mahmood, A., Mian, A.: Hyperspectral face recognition with spatiospectral information fusion and PLS regression. IEEE Trans. Image Process. 24(3), 1127–1137 (2015)

    Article  MathSciNet  Google Scholar 

  7. Turk, M., Pentland, A.: Face recognition using eigenfaces. In: IEEE International Conference Computer Vision and Pattern Recognition, pp. 586–591 (1991)

    Google Scholar 

  8. Ahonen, T., Hadid, A., Pietikainen, M.: Face recognition with local binary pattern. In: Proceedings of the 8th European Conference on Computer Vision, pp. 469–481 (2004)

    Google Scholar 

  9. Chen, G.Y., Sun, W., Xie, W.F.: Hyperspectral face recognition using log-polar Fourier features and collaborative representation-based voting classifiers. IET Biomet. 6(1), 36–42 (2017)

    Article  Google Scholar 

  10. Andersson, F.: Fast inversion of the Radon transform using log-polar coordinates and partial back-projections. SIAM J. Appl. Math. 65, 818–837 (2005)

    Article  MathSciNet  Google Scholar 

  11. Sun, S., Zhao, H., Jin, B.: Robust tensor preserving projection for multispectral face recognition. Math. Probl. Eng. 597245 (2014)

    Google Scholar 

  12. Wang, H., Bau, T.C., Healey, G.: Expression-invariant face recognition in hyperspectral images. Opt. Eng. 53(10), 103102 (2014)

    Article  Google Scholar 

  13. Pan, Z., Healey, G., Tromberg, B.: Hyperspectral face recognition under unknown illumination. Opt. Eng. 46(7), 077201 (2007)

    Article  Google Scholar 

  14. Sharma, V., Gool, L.V.: Image-level classification in hyperspectral images using feature descriptors, with application to face recognition. Submitted to Computer Vision and Pattern Recognition, 11 May 2016. http://arxiv.org/pdf/1605.03428.pdf

  15. Vinayak, B., Payal, M.: Hyperspectral face recognition using multidimensional clustering on hyperspectral face images. LAP Lambert Academic Publishing (2014)

    Google Scholar 

  16. Chen, G.Y., Xie, W.F.: Hyperspectral face recognition with minimum noise fraction, histogram of oriented gradient features and collaborative representation-based classifier. J. Intell. Fuzzy Syst. 37, 635–643 (2019)

    Article  Google Scholar 

  17. Chen, G.Y., Li, C.J., Sun, W.: Hyperspectral face recognition via feature extraction and CRC-based classifier. IET Image Proc. 11(4), 266–272 (2017)

    Article  Google Scholar 

  18. Bastanfard, A., Bastanfard, O., Takahashi, H., Nakajima, M.: Toward anthropometric simulation of face rejuvenation and skin cosmetics. Comput. Anim. Virtual Worlds 15, 347–352 (2004)

    Article  Google Scholar 

  19. Bastanfard, A., Takahashi, H., Nakajima, M.: Toward E-appearance of human face and hair by age, expression and rejuvenation. In: International Conference on Cyberworlds. Tokyo, Japan (2004)

    Google Scholar 

  20. Dehshibi, M.M., Bastanfard, A.: A new algorithm for age recognition from facial images. Signal Process. 90(8), 2431–2444 (2010)

    Article  Google Scholar 

  21. Chen, G.Y., Krzyzak, A., Xie, W.F.: Hyperspectral face recognition with histogram of oriented gradient features and collaborate representation-based classifier. Multimedia Tools Appl. 81(2), 2299–2310 (2022)

    Article  Google Scholar 

  22. Tan, X., Triggs, B.: Enhanced local texture sets for face recognition under difficult lighting conditions. IEEE Trans. Image Process. 19(6), 1635–1650 (2010)

    Article  MathSciNet  Google Scholar 

  23. Heusch, G., Cardinaux, F., Marcel, S., Lighting normalization algorithms for face verification, IDIAP-com 05-03. March 2005

    Google Scholar 

  24. Struc, V., Pavesic, N.: Illumination invariant face recognition by non-local smoothing. In: Proceedings of BIOID MultiComm, LNCS 5707, pp. 1–8. Springer, September 2009

    Google Scholar 

  25. Park, Y.K., Park, S.L., Kim, J.K.: Retinex method based on adaptive smoothing for illumination invariant face recognition. Signal Process. 88(8), 1929–1945 (2008)

    Article  Google Scholar 

  26. Gross, R., Brajovic, V.: An image preprocessing algorithm for illumination invariant face recognition. In: Proceedings of the 4th International Conference on Audio- and Video-Based Biometric Personal Authentication, AVPBA 2003, pp. 10–18 (2003)

    Google Scholar 

  27. Chen, W., Er, M.J., Wu, S.: Illumination compensation and normalization for robust face recognition Using Discrete Cosine Transform in Logarithmic Domain. IEEE Trans. Syst. Man Cybern. Part B 36(2), 458–466 (2006)

    Article  Google Scholar 

  28. Oppenheim, A.V., Schafer, R.W., Stockham, T.G.: Nonlinear filtering of multiplied and convolved signals. Proc. IEEE 56(8), 1264–1291 (1968)

    Article  Google Scholar 

  29. Jabson, D.J., Rahmann, Z., Woodell, G.A.: A multiscale Retinex for bridging the gap between color images and the human observations of scenes. IEEE Trans. Image Process. 6(7), 897–1056 (1997)

    Google Scholar 

  30. Wang, H., Li, S. Z., Wang, Y., Zhang, J.: Self quotient image for face recognition. In: Proceedings of the International Conference on Pattern Recognition, pp. 1397–1400 (2004)

    Google Scholar 

  31. Freeman, W.T., Adelson, E.H.: The design and use of steerable filters. IEEE Trans. Pattern Anal. Mach. Intell. 13(9), 891–906 (1991)

    Article  Google Scholar 

  32. Zhang, T., et al.: Multiscale facial structure representation for face recognition under varying illumination. Pattern Recogn. 42(2), 252–258 (2009)

    Article  Google Scholar 

  33. Du, S., Ward, R.K.: Adaptive region-based image enhancement method for robust face recognition under variable illumination conditions. IEEE Trans. Circuits Syst. Video Technol. 20(9), 1165–1175 (2010)

    Article  Google Scholar 

  34. Davidson, M.W., Abramowitz, M.: Molecular expressions microscopy primer: digital image processing – Difference of Gaussians Edge Enhancement Algorithm, Olympus America Inc., and Florida State University

    Google Scholar 

  35. Zhang, T., Tang, Y.Y., Fang, B., Shang, Z., Liu, X.: Face recognition under varying illumination using gradientfaces. IEEE Trans. Image Process. 18(11), 2599–2606 (2009)

    Article  MathSciNet  Google Scholar 

  36. Xie, X., Zheng, W.S., Lai, J., Yuen, P.C., Suen, C.Y.: Normalization of face illumination based on large-and small-scale features. IEEE Trans. Image Process. 20(7), 1807–1821 (2011)

    Article  MathSciNet  Google Scholar 

  37. Wang, B., Li, W., Liao, Q.: Illumination normalization based on Weber’s law with application to face recognition. IEEE Signal Process. Lett. 18(8), 462–465 (2011)

    Article  Google Scholar 

  38. Green, A.A., Berman, M., Switzer, P., Craig, M.D.: A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Trans. Geosci. Remote Sens. 26(1), 65–74 (1988)

    Article  Google Scholar 

  39. Lee, J.B., Woodyatt, A.S., Berman, M.: Enhancement of high spectral resolution remote sensing data by a noise-adjusted principal component transform. IEEE Trans. Geosci. Remote Sens. 28(3), 295–304 (1990)

    Article  Google Scholar 

  40. Dabov, K., Foi, A., Egiazarian, K.: Video denoising by sparse 3D transform-domain collaborative filtering. In: Proceedings of the 15th European Signal Processing Conference, EUSIPCO 2007. Poznan, Poland (2007)

    Google Scholar 

  41. Dalal, N., Triggs. B.: Histograms of oriented gradients for human detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 886–893 (2005)

    Google Scholar 

  42. Wright, J.A., Yang, A.Y., Ganesh, A., Sastry, S.S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227 (2009)

    Article  Google Scholar 

  43. Zhang, L., Yang, M., Feng, X.: Sparse representation or collaborative representation: which helps face recognition? In: IEEE International Conference on Computer Vision, pp. 471–478 (2011)

    Google Scholar 

  44. Masayuki Tanka’s Matlab code for face parts detection. https://www.mathworks.com/matlabcentral/fileexchange/36855-face-parts-detection. Accessed 18 August 2016

  45. Abdi, H.: Partial least squares regression and projection on latent structure regression (PLS-Regression), Wiley Interdisciplinary Reviews: Computational Statistics, vol. 2, pp. 97–106 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang Yi Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, G.Y., Xie, W., Krzyzak, A. (2024). Hyperspectral Face Recognition via Existing 2D Face Recognition Methods. In: Huang, DS., Zhang, X., Guo, J. (eds) Advanced Intelligent Computing Technology and Applications. ICIC 2024. Lecture Notes in Computer Science, vol 14866. Springer, Singapore. https://doi.org/10.1007/978-981-97-5594-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-5594-3_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-5593-6

  • Online ISBN: 978-981-97-5594-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy