Skip to main content

DBIF: Dual-Branch Feature Extraction Network for Infrared and Visible Image Fusion

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15038))

Included in the following conference series:

  • 145 Accesses

Abstract

In image fusion, combining infrared and visible images from different sensors is crucial to create a complete representation that merges complementary information. However, current deep learning approaches, mainly using Convolutional Neural Networks (CNNs) or Transformer architectures, do not fully capitalize on the distinct features of infrared and visible images. To overcome this limitation, we introduce a novel Dual-Branch feature extraction network for infrared and visible image fusion (DBIF). DBIF optimally leverages the advantages of CNN and Transformer for feature extraction from different types of images. Specifically, the Transformer’s proficiency in extracting global features renders it more suitable for extracting target information from infrared images, while the CNN’s superior sensitivity to capturing local information makes it more adept at extracting background texture information from visible images. Consequently, our DBIF architecture incorporates two distinct branches, content and detail, for feature extraction from infrared and visible images, respectively. Additionally, we introduce a Detailed Feature Enhancement Module (DFEM) to consolidate and amplify the prominent features extracted by the detailed branch. Through extensive experimentation across multiple datasets, we validate the effectiveness of our proposed approach, showcasing its superiority over existing fusion algorithms. Furthermore, our method shows substantial performance improvements, especially in object detection tasks. This underscores its practical relevance in various real-world applications that require accurate and efficient fusion of diverse image data types.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cao, Y., Guan, D., Huang, W., Yang, J., Cao, Y., Qiao, Y.: Pedestrian detection with unsupervised multispectral feature learning using deep neural networks. Inf. Fusion 46, 206–217 (2019)

    Google Scholar 

  2. Chen, J., Li, X., Luo, L., Mei, X., Ma, J.: Infrared and visible image fusion based on target-enhanced multiscale transform decomposition. Inf. Sci. 508, 64–78 (2020)

    Article  Google Scholar 

  3. Cvejic, N., Bull, D., Canagarajah, N.: Region-based multimodal image fusion using ICA bases. IEEE Sens. J. 7(5), 743–751 (2007)

    Article  Google Scholar 

  4. Eslami, M., Mohammadzadeh, A.: Developing a spectral-based strategy for urban object detection from airborne hyperspectral TIR and visible data. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 9(5), 1808–1816 (2015)

    Article  Google Scholar 

  5. Fu, Y., Xu, T., Wu, X., Kittler, J.: Ppt fusion: Pyramid patch transformer for a case study in image fusion (2021). arXiv:2107.13967

  6. Gao, S.B., Ren, Y.Z., Zhang, M., Li, Y.J.: Combining bottom-up and top-down visual mechanisms for color constancy under varying illumination. IEEE Trans. Image Process. 28(9), 4387–4400 (2019)

    Article  MathSciNet  Google Scholar 

  7. Gao, S., He, L., Li, Y.: Biologically inspired image invariance guided illuminant estimation using shallow and deep models. Expert Syst. Appl. 249, 123391 (2024)

    Article  Google Scholar 

  8. Ha, Q., Watanabe, K., Karasawa, T., Ushiku, Y., Harada, T.: MFNet: towards real-time semantic segmentation for autonomous vehicles with multi-spectral scenes. In: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5108–5115 (2017)

    Google Scholar 

  9. Li, C., Zhu, C., Huang, Y., Tang, J., Wang, L.: Cross-modal ranking with soft consistency and noisy labels for robust RGB-T tracking. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 808–823 (2018)

    Google Scholar 

  10. Li, H., Wu, X.J.: DenseFuse: a fusion approach to infrared and visible images. IEEE Trans. Image Process. 28(5), 2614–2623 (2018)

    Article  MathSciNet  Google Scholar 

  11. Li, H., Wu, X.J., Durrani, T.: NestFuse: an infrared and visible image fusion architecture based on nest connection and spatial/channel attention models. IEEE Trans. Instrum. Meas. 69(12), 9645–9656 (2020)

    Article  Google Scholar 

  12. Li, H., Wu, X.J., Kittler, J.: MDLatLRR: a novel decomposition method for infrared and visible image fusion. IEEE Trans. Image Process. 29, 4733–4746 (2020)

    Article  Google Scholar 

  13. Li, H., Wu, X.J., Kittler, J.: RFN-nest: an end-to-end residual fusion network for infrared and visible images. Inf. Fusion 73, 72–86 (2021)

    Article  Google Scholar 

  14. Liu, J., Fan, X., Huang, Z., Wu, G., Liu, R., Zhong, W., Luo, Z.: Target-aware dual adversarial learning and a multi-scenario multi-modality benchmark to fuse infrared and visible for object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5802–5811 (2022)

    Google Scholar 

  15. Liu, Y., Chen, X., Ward, R.K., Wang, Z.J.: Image fusion with convolutional sparse representation. IEEE Signal Process. Lett. 23(12), 1882–1886 (2016)

    Article  Google Scholar 

  16. Luo, Z., Tian, Y.: Infrared road object detection based on improved YOLOv8. IAENG Int. J. Comput. Sci. 51(3) (2024)

    Google Scholar 

  17. Ma, J., Chen, C., Li, C., Huang, J.: Infrared and visible image fusion via gradient transfer and total variation minimization. Inf. Fusion 31, 100–109 (2016)

    Article  Google Scholar 

  18. Ma, J., Liang, P., Yu, W., Chen, C., Guo, X., Wu, J., Jiang, J.: Infrared and visible image fusion via detail preserving adversarial learning. Inf. Fusion 54, 85–98 (2020)

    Article  Google Scholar 

  19. Ma, J., Ma, Y., Li, C.: Infrared and visible image fusion methods and applications: a survey. Inf. Fusion 45, 153–178 (2019)

    Article  Google Scholar 

  20. Ma, J., Tang, L., Xu, M., Zhang, H., Xiao, G.: STDFusionNet: an infrared and visible image fusion network based on salient target detection. IEEE Trans. Instrum. Meas. 70, 1–13 (2021)

    Google Scholar 

  21. Ma, J., Yu, W., Liang, P., Li, C., Jiang, J.: FusionGAN: a generative adversarial network for infrared and visible image fusion. Inf. Fusion 48, 11–26 (2019)

    Article  Google Scholar 

  22. Ma, J., Zhang, H., Shao, Z., Liang, P., Xu, H.: GANMcC: a generative adversarial network with multiclassification constraints for infrared and visible image fusion. IEEE Trans. Instrum. Meas. 70, 1–14 (2020)

    Google Scholar 

  23. Ma, J., Zhou, Z., Wang, B., Zong, H.: Infrared and visible image fusion based on visual saliency map and weighted least square optimization. Infrared Phys. Technol. 82, 8–17 (2017)

    Article  Google Scholar 

  24. Tan, M.J., Gao, S.B., Xu, W.Z., Han, S.C.: Visible-infrared image fusion based on early visual information processing mechanisms. IEEE Trans. Circuits Syst. Video Technol. 31(11), 4357–4369 (2020)

    Article  Google Scholar 

  25. Tan, M., Yuan, X., Liang, B., Han, S.: DRFnet: dynamic receptive field network for object detection and image recognition. Front. Neurorobot. 16, 1100697 (2023)

    Article  Google Scholar 

  26. Tang, L., Yuan, J., Zhang, H., Jiang, X., Ma, J.: PIAFusion: a progressive infrared and visible image fusion network based on illumination aware. Inf. Fusion 83, 79–92 (2022)

    Article  Google Scholar 

  27. Tang, W., He, F., Liu, Y., Duan, Y., Si, T.: DATFuse: infrared and visible image fusion via dual attention transformer. IEEE Trans. Circuits Syst. Video Technol. 33(7), 3159–3172 (2023)

    Article  Google Scholar 

  28. Toet, A., Hogervorst, M.A.: Progress in color night vision. Opt. Eng. 51(1), 010901–010901 (2012)

    Article  Google Scholar 

  29. Vs, V., Valanarasu, J.M.J., Oza, P., Patel, V.M.: Image fusion transformer. In: 2022 IEEE International Conference on Image Processing (ICIP), pp. 3566–3570 (2022)

    Google Scholar 

  30. Wang, Z., Chen, Y., Shao, W., Li, H., Zhang, L.: SwinFuse: a residual Swin transformer fusion network for infrared and visible images. IEEE Trans. Instrum. Meas. 71, 1–12 (2022)

    Article  Google Scholar 

  31. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  32. Xing, C., Wang, M., Wang, Z., Duan, C., Liu, Y.: Diagonalized low-rank learning for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. PP(99), 1–12 (2021)

    Google Scholar 

  33. Xu, H., Gong, M., Tian, X., Huang, J., Ma, J.: CUFD: an encoder-decoder network for visible and infrared image fusion based on common and unique feature decomposition. Comput. Vis. Image Underst. 218, 103407 (2022)

    Article  Google Scholar 

  34. Xu, H., Ma, J., Le, Z., Jiang, J., Guo, X.: Fusiondn: a unified densely connected network for image fusion. In: Proceedings of the AAAI Conference on Artificial Intelligence. vol. 34, pp. 12484–12491 (2020)

    Google Scholar 

  35. Xue, S., Gao, S., Tan, M., He, Z., He, L.: How does color constancy affect target recognition and instance segmentation? In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 5537–5545 (2021)

    Google Scholar 

  36. Zhang, H., Xu, H., Tian, X., Jiang, J., Ma, J.: Image fusion meets deep learning: a survey and perspective. Inf. Fusion 76, 323–336 (2021)

    Article  Google Scholar 

  37. Zhang, H., Xu, H., Xiao, Y., Guo, X., Ma, J.: Rethinking the image fusion: a fast unified image fusion network based on proportional maintenance of gradient and intensity. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 12797–12804 (2020)

    Google Scholar 

  38. Zhang, X.S., Gao, S.B., Li, R.X., Du, X.Y., Li, C.Y., Li, Y.J.: A retinal mechanism inspired color constancy model. IEEE Trans. Image Process. 25(3), 1219–1232 (2016)

    Article  MathSciNet  Google Scholar 

  39. Zhang, Y., Liu, Y., Sun, P., Yan, H., Zhao, X., Zhang, L.: IFCNN: a general image fusion framework based on convolutional neural network. Inf. Fusion 54, 99–118 (2020)

    Article  Google Scholar 

  40. Zhao, F., Zhao, W., Yao, L., Liu, Y.: Self-supervised feature adaption for infrared and visible image fusion. Inf. Fusion 76, 189–203 (2021)

    Article  Google Scholar 

  41. Zhao, Z., Xu, S., Zhang, C., Liu, J., Li, P., Zhang, J.: DIDFuse: deep image decomposition for infrared and visible image fusion (2020). arXiv:2003.09210

Download references

Acknowledgement

This work is supported by the National Key R&D Program of China (2023YFF0615800), the National Natural Science Foundation of China (62076170).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaobing Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, H., Cui, R., Zheng, Z., Gao, S. (2025). DBIF: Dual-Branch Feature Extraction Network for Infrared and Visible Image Fusion. In: Lin, Z., et al. Pattern Recognition and Computer Vision. PRCV 2024. Lecture Notes in Computer Science, vol 15038. Springer, Singapore. https://doi.org/10.1007/978-981-97-8685-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-8685-5_22

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-8684-8

  • Online ISBN: 978-981-97-8685-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy