Abstract
Multi-class segmentation of vertebrae and intervertebral discs is of paramount importance for accurate diagnosis and treatment of various spinal diseases. However, achieving precise segmentation remains a challenging task. In this study, we propose a modified BiSeNet specifically designed for spine segmentation, aiming to address the limitations and improve the segmentation performance. Our motivation behind modifying BiSeNet lies in fully leveraging the strengths of both the context and spatial paths in feature extraction based on the BiSeNet. To enhance segmentation effectiveness, we fuse the two paths, which consist of a context extractor and a spatial extractor, using the feature fusion module (FFM) in BiSeNet. We utilize a U-shaped architecture for the context path, incorporating attention refinement modules (ARM) to leverage features from all encoder layers. Additionally, a specific residual structure is introduced to enhance the context extractor’s effectiveness. For the spatial path, we introduce a novel multi-scale convolution attention module based on the SegNext structure. These main contributions in our framework improve the segmentation effectiveness by capturing long-range relationships among vertebrae and intervertebral discs while considering inter-class similarity and intra-class variation. Experimental results on an MRI dataset comprising 172 subjects demonstrate impressive performance, with a mean Dice similarity coefficient of 82.365% across all spinal structures. These results indicate the considerable potential of our proposed method in aiding the diagnosis and treatment of spinal diseases.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Garg, S., Bhagyashree, S.R.: Spinal cord MRI segmentation techniques and algorithms: a survey. SN Comput. Sci. 2(3), 229 (2021)
Fouladivanda, M., Kazemi, K., Helfroush, M.S., et al.: Morphological active contour driven by local and global intensity fitting for spinal cord segmentation from MR images. J. Neurosci. Methods 308, 116–128 (2018)
Eltanboly, A., Ghazal, M., Hajjdiab, H., et al.: Level sets-based image segmentation approach using statistical shape priors. Appl. Math. Comput. 340, 164–179 (2019)
Yu, W., Liu, W., Tan, L., Zhang, S., Zheng, G.: Multi-object model-based multi-atlas segmentation constrained grid cut for automatic segmentation of lumbar vertebrae from CT images. In: Zheng, G., Tian, W., Zhuang, X. (eds.) Intelligent Orthopaedics. AEMB, vol. 1093, pp. 65–71. Springer, Singapore (2018). https://doi.org/10.1007/978-981-13-1396-7_5
Hille, G., Saalfeld, S., Serowy, S., et al.: Vertebral body segmentation in wide range clinical routine spine MRI data. Comput. Methods Programs Biomed. 155, 93–99 (2018)
Siemionow, K., Luciano, C., Forsthoefel, C., et al.: Autonomous image segmentation and identification of anatomical landmarks from lumbar spine intraoperative computed tomography scans using machine learning: a validation study. J. Craniovertebral Junction Spine 11(2), 99 (2020)
Mushtaq, M., Akram, M.U., Alghamdi, N.S., et al.: Localization and edge-based segmentation of lumbar spine vertebrae to identify the deformities using deep learning models. Sensors 22(4), 1547 (2022)
Chen, H., Dou, Q., Wang, X., Qin, J., Cheng, J.C.Y., Heng, PA.: 3D fully convolutional networks for intervertebral disc localization and segmentation. In: Zheng, G., Liao, H., Jannin, P., Cattin, P., Lee, SL. (eds.) MIAR 2016. LNCS, vol. 9805, pp. 375–382. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43775-0_34
Hutt, H., Everson, R., Meakin, J.: 3D Intervertebral Disc segmentation from MRI using supervoxel-based CRFs. In: Vrtovec, T., et al. (eds.) Computational Methods and Clinical Applications for Spine Imaging. CSI 2015. LNCS, vol. 9402, pp. 125–129. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41827-8_12
Lee, J., Kim, S., Kim, Y.S., et al.: Automated segmentation of the lumbar pedicle in CT images for spinal fusion surgery. IEEE Trans. Biomed. Eng. 58(7), 2051 (2011)
Wei, Y., Wang, X.: An improved image segmentation algorithm CT superpixel grid using active contour. Wirel. Commun. Mob. Comput. 2021, 1–9 (2021)
Rehman, F., Ali Shah, S.I., Riaz, M.N., et al.: A region-based deep level set formulation for vertebral bone segmentation of osteoporotic fractures. J. Digit. Imaging 33, 191–203 (2020)
Xie, L., Wisse, L.E.M., Wang, J., et al.: Deep label fusion: a generalizable hybrid multi-atlas and deep convolutional neural network for medical image segmentation. Med. Image Anal. 83, 102683 (2023)
Haq, R., Schmid, J., Borgie, R., et al.: Deformable multisurface segmentation of the spine for orthopedic surgery planning and simulation. J. Med. Imaging 7(1), 015002 (2020)
Altini, N., De Giosa, G., Fragasso, N., et al.: Segmentation and identification of vertebrae in CT scans using CNN, k-means clustering and k-NN. Informatics 8(2), 40 (2021)
Wang, B., Qin, J., Lv, L., et al.: MLKCA-Unet: multiscale large-kernel convolution and attention in Unet for spine MRI segmentation. Optik 272, 170277 (2023)
Kim, S., Bae, W.C., Masuda, K., et al.: Fine-grain segmentation of the intervertebral discs from MR spine images using deep convolutional neural networks: BSU-Net. Appl. Sci. 8(9), 1656 (2018)
Guinebert, S., Petit, E., Bousson, V., et al.: Automatic semantic segmentation and detection of vertebras and intervertebral discs by neural networks. Comput. Methods Programs Biomed. Update 2, 100055 (2022)
Fallah, F., Walter, S.S., Bamberg, F., et al.: Simultaneous volumetric segmentation of vertebral bodies and intervertebral discs on fat-water MR images. IEEE J. Biomed. Health Inform. 23(4), 1692–1701 (2018)
Huang, J., Shen, H., Wu, J., et al.: Spine explorer: a deep learning based fully automated program for efficient and reliable quantifications of the vertebrae and discs on sagittal lumbar spine MR images. Spine J. 20(4), 590–599 (2020)
Han, Z., Wei, B., Mercado, A., et al.: Spine-GAN: semantic segmentation of multiple spinal structures. Med. Image Anal. 50, 23–35 (2018)
Neubert, A., Fripp, J., Shen, K., et al.: Automated 3D segmentation of vertebral bodies and intervertebral discs from MRI. In: 2011 International Conference on Digital Image Computing: Techniques and Applications, pp. 19–24. IEEE (2011)
Oktay, A.B., Akgul, Y.S.: Simultaneous localization of lumbar vertebrae and intervertebral discs with SVM-based MRF. IEEE Trans. Biomed. Eng. 60(9), 2375–2383 (2013)
Lu J.T., Pedemonte S., Bizzo B., et al.: Deep spine: automated lumbar vertebral segmentation, disc-level designation, and spinal stenosis grading using deep learning. In: Finale, D., Jim, F., Ken, J., et al. (eds.) Machine Learning for Healthcare Conference, pp. 403–419. PMLR (2018)
Suri, A., Jones, B.C., Ng, G., et al.: A deep learning system for automated, multi-modality 2D segmentation of vertebral bodies and intervertebral discs. Bone 149, 15972 (2021)
Wimmer, M., Major, D., Novikov, A.A., et al.: Fully automatic cross-modality localization and labeling of vertebral bodies and intervertebral discs in 3D spinal images. Int. J. Comput. Assist. Radiol. Surg. 13, 1591–1603 (2018)
Pang, S., Pang, C., Zhao, L., et al.: SpineParseNet: spine parsing for volumetric MR image by a two-stage segmentation framework with semantic image representation. IEEE Trans. Med. Imaging 40(1), 262–273 (2020)
Li, C., Liu, T., Chen, Z., et al.: SPA-ResUNet: strip pooling attention resunet for multi-class segmentation of vertebrae and intervertebral discs. In: 2022 IEEE 19th International Symposium on Biomedical Imaging (ISBI), Kolkata, India, pp.1–5 (2022)
Yu, C., Wang, J., Peng, C., Gao, C., Yu, G., Sang, N.: BiSeNet: bilateral segmentation network for real-time semantic segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 334–349. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01261-8_20
Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Rahman, H., Bukht, T.F.N., Imran, A., et al.: A deep learning approach for liver and tumor segmentation in CT images using ResUNet. Bioengineering 9(8), 368 (2022)
Acknowledgment
This work was supported in part by the Project of Shenzhen Science and Technology Innovation Committee, China, under Grant KCXFZ20201221173202007; in part by the Key Scientific Research Platforms and Projects of Guangdong Regular Institutions of Higher Education, China, under Grant 2022KCXTD033; in part by the Scientific Research Capacity Improvement Project of Key Developing Disciplines in Guangdong Province, China, under Grant 2021ZDJS084; in part by the Guangdong Natural Science Foundation, China, under Grant 2023A1515012103; and in part by the Fundamental Public Welfare Research Project of Zhejiang Province, China, under Grant LGG21E050022.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Deng, Y. et al. (2023). A Modified BiSeNet for Spinal Segmentation. In: Yang, H., et al. Intelligent Robotics and Applications. ICIRA 2023. Lecture Notes in Computer Science(), vol 14269. Springer, Singapore. https://doi.org/10.1007/978-981-99-6489-5_11
Download citation
DOI: https://doi.org/10.1007/978-981-99-6489-5_11
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-6488-8
Online ISBN: 978-981-99-6489-5
eBook Packages: Computer ScienceComputer Science (R0)