Skip to main content

A Property Constrained Video Summarization Framework via Regret Minimization

  • Conference paper
  • First Online:
PRICAI 2023: Trends in Artificial Intelligence (PRICAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14325))

Included in the following conference series:

  • 1010 Accesses

Abstract

Video summarization has become one of the most effective solutions for quickly understanding a large amount of video data. Video properties such as importance, diversity, representativeness and storyness have been widely adopted for summarization based on kinds of features of video frames. To fully exploit these properties, in this paper we propose a property constrained video summarization framework to output fixed-size summaries based on the concept of regret minimization which is popular in the database community for solving multi-criteria decision making problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. de Avila, S.E.F., Lopes, A.P.B., da Luz, A., de Albuquerque Araújo, A.: VSUMM: A mechanism designed to produce static video summaries and a novel evaluation method. Pattern Recogn. Lett. 32(1), 56–68 (2011)

    Google Scholar 

  2. Basavarajaiah, M., Sharma, P.: Gvsum: generic video summarization using deep visual features. Multimedia Tools Appli. 80, 14459–14476 (2021)

    Article  Google Scholar 

  3. Chi Wong, H., Bern, M., Goldberg, D.: An image signature for any kind of image. In: ICIP, vol. 1, pp. 409–412 (2002)

    Google Scholar 

  4. Gygli, M., Grabner, H., Riemenschneider, H., Van Gool, L.: Creating summaries from user videos. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 505–520. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10584-0_33

    Chapter  Google Scholar 

  5. Gygli, M., Grabner, H., Van Gool, L.: Video summarization by learning submodular mixtures of objectives. In: CVPR, pp. 3090–3098 (2015)

    Google Scholar 

  6. Li, X., Zhao, B., Lu, X.: A general framework for edited video and raw video summarization. TIP 26(8), 3652–3664 (2017)

    MathSciNet  MATH  Google Scholar 

  7. Ma, M., Mei, S., Wan, S., Hou, J., Wang, Z., Feng, D.D.: Video summarization via block sparse dictionary selection. Neurocomputing 378, 197–209 (2020)

    Article  Google Scholar 

  8. Nanongkai, D., Sarma, A.D., Lall, A., Lipton, R.J., Xu, J.: Regret-minimizing representative databases. VLDB 3(1), 1114–1124 (2010)

    Google Scholar 

  9. Souček, T., Lokoč, J.: TransNet v2: An effective deep network architecture for fast shot transition detection. arXiv preprint arXiv:2008.04838 (2020)

  10. Teng, X., et al.: A multi-flexible video summarization scheme using property-constraint decision tree. Neurocomputing 506, 406–417 (2022)

    Article  Google Scholar 

  11. Tiwari, V., Bhatnagar, C.: A survey of recent work on video summarization: approaches and techniques. Multimedia Tools Appli. 80(18), 27187–27221 (2021). https://doi.org/10.1007/s11042-021-10977-y

    Article  Google Scholar 

  12. Wang, S., et al.: Scalable gastroscopic video summarization via similar-inhibition dictionary selection. Artif. Intell. Med. 66, 1–13 (2016)

    Article  Google Scholar 

  13. Xie, M., Wong, R.C., Li, J., Long, C., Lall, A.: Efficient k-regret query algorithm with restriction-free bound for any dimensionality. In: SIGMOD, pp. 959–974 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiping Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, Y., Zheng, J., Tao, Y., Zhu, K. (2024). A Property Constrained Video Summarization Framework via Regret Minimization. In: Liu, F., Sadanandan, A.A., Pham, D.N., Mursanto, P., Lukose, D. (eds) PRICAI 2023: Trends in Artificial Intelligence. PRICAI 2023. Lecture Notes in Computer Science(), vol 14325. Springer, Singapore. https://doi.org/10.1007/978-981-99-7019-3_28

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7019-3_28

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7018-6

  • Online ISBN: 978-981-99-7019-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy