Abstract
Video summarization has become one of the most effective solutions for quickly understanding a large amount of video data. Video properties such as importance, diversity, representativeness and storyness have been widely adopted for summarization based on kinds of features of video frames. To fully exploit these properties, in this paper we propose a property constrained video summarization framework to output fixed-size summaries based on the concept of regret minimization which is popular in the database community for solving multi-criteria decision making problems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
de Avila, S.E.F., Lopes, A.P.B., da Luz, A., de Albuquerque Araújo, A.: VSUMM: A mechanism designed to produce static video summaries and a novel evaluation method. Pattern Recogn. Lett. 32(1), 56–68 (2011)
Basavarajaiah, M., Sharma, P.: Gvsum: generic video summarization using deep visual features. Multimedia Tools Appli. 80, 14459–14476 (2021)
Chi Wong, H., Bern, M., Goldberg, D.: An image signature for any kind of image. In: ICIP, vol. 1, pp. 409–412 (2002)
Gygli, M., Grabner, H., Riemenschneider, H., Van Gool, L.: Creating summaries from user videos. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 505–520. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10584-0_33
Gygli, M., Grabner, H., Van Gool, L.: Video summarization by learning submodular mixtures of objectives. In: CVPR, pp. 3090–3098 (2015)
Li, X., Zhao, B., Lu, X.: A general framework for edited video and raw video summarization. TIP 26(8), 3652–3664 (2017)
Ma, M., Mei, S., Wan, S., Hou, J., Wang, Z., Feng, D.D.: Video summarization via block sparse dictionary selection. Neurocomputing 378, 197–209 (2020)
Nanongkai, D., Sarma, A.D., Lall, A., Lipton, R.J., Xu, J.: Regret-minimizing representative databases. VLDB 3(1), 1114–1124 (2010)
Souček, T., Lokoč, J.: TransNet v2: An effective deep network architecture for fast shot transition detection. arXiv preprint arXiv:2008.04838 (2020)
Teng, X., et al.: A multi-flexible video summarization scheme using property-constraint decision tree. Neurocomputing 506, 406–417 (2022)
Tiwari, V., Bhatnagar, C.: A survey of recent work on video summarization: approaches and techniques. Multimedia Tools Appli. 80(18), 27187–27221 (2021). https://doi.org/10.1007/s11042-021-10977-y
Wang, S., et al.: Scalable gastroscopic video summarization via similar-inhibition dictionary selection. Artif. Intell. Med. 66, 1–13 (2016)
Xie, M., Wong, R.C., Li, J., Long, C., Lall, A.: Efficient k-regret query algorithm with restriction-free bound for any dimensionality. In: SIGMOD, pp. 959–974 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Xu, Y., Zheng, J., Tao, Y., Zhu, K. (2024). A Property Constrained Video Summarization Framework via Regret Minimization. In: Liu, F., Sadanandan, A.A., Pham, D.N., Mursanto, P., Lukose, D. (eds) PRICAI 2023: Trends in Artificial Intelligence. PRICAI 2023. Lecture Notes in Computer Science(), vol 14325. Springer, Singapore. https://doi.org/10.1007/978-981-99-7019-3_28
Download citation
DOI: https://doi.org/10.1007/978-981-99-7019-3_28
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-7018-6
Online ISBN: 978-981-99-7019-3
eBook Packages: Computer ScienceComputer Science (R0)