Abstract
A ring signature scheme allows a group member to generate a signature on behalf of the whole group, while the verifier can not tell who computed this signature. However, most predecessors do not guarantee security from the secret key leakage of signers. In 2002, Anderson proposed forward security mechanism to reduce the effect of such leakage. In this paper, we construct the first lattice-based ring signature scheme with forward security. Our scheme combines the binary tree and lattice basis delegation technique to realize a key evolution mechanism, where secret keys are ephemeral and updated with generating nodes in the binary tree. Thus, adversaries cannot forge the past signature even if the users’ present secret keys are revealed. Moreover, our scheme can offer unforgeability under the standard model. Furthermore, our proposed scheme is expected to realize post-quantum security due to the underlying Short Integer Solution (SIS) problem in lattice-based cryptography.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abdalla, M., Reyzin, L.: A new forward-secure digital signature scheme. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 116–129. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44448-3_10
Ajtai, M.: Generating hard instances of the short basis problem. In: Wiedermann, J., van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 1–9. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48523-6_1
Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. In: 26th International Symposium on Theoretical Aspects of Computer Science, STACS, vol. 3, pp. 75–86 (2009)
Anderson, R.: Two remarks on public key cryptology. Technical report, University of Cambridge, Computer Laboratory (2002)
Bellare, M., Miner, S.K.: A forward-secure digital signature scheme. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 431–448. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_28
Bender, A., Katz, J., Morselli, R.: Ring signatures: stronger definitions, and constructions without random oracles. J. Cryptol. 22(1), 114–138 (2009)
Boneh, D., Boyen, X., Goh, E.-J.: Hierarchical identity based encryption with constant size ciphertext. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 440–456. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_26
Boyen, X., Haines, T.: Forward-secure linkable ring signatures. In: Susilo, W., Yang, G. (eds.) ACISP 2018. LNCS, vol. 10946, pp. 245–264. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93638-3_15
Canard, S., Georgescu, A., Kaim, G., Roux-Langlois, A., Traoré, J.: Constant-size lattice-based group signature with forward security in the standard model. In: Nguyen, K., Wu, W., Lam, K.Y., Wang, H. (eds.) ProvSec 2020. LNCS, vol. 12505, pp. 24–44. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-62576-4_2
Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-39200-9_16
Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai trees, or how to delegate a lattice basis. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 523–552. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_27
Dodis, Y., Katz, J., Xu, S., Yung, M.: Key-insulated public key cryptosystems. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 65–82. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_5
Duc, D.N., Cheon, J.H., Kim, K.: A forward-secure blind signature scheme based on the strong RSA assumption. In: Qing, S., Gollmann, D., Zhou, J. (eds.) ICICS 2003. LNCS, vol. 2836, pp. 11–21. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39927-8_2
Feng, H., Liu, J., Wu, Q., Li, Y.-N.: Traceable ring signatures with post-quantum security. In: Jarecki, S. (ed.) CT-RSA 2020. LNCS, vol. 12006, pp. 442–468. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40186-3_19
Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Proceedings of the ACM Symposium on Theory of Computing, pp. 197–206 (2008)
Gritti, C., Susilo, W., Plantard, T.: Logarithmic size ring signatures without random oracles. IET Inf. Secur. 10(1), 1–7 (2016)
Hu, M., Liu, Z.: Lattice-based linkable ring signature in the standard model. IACR Cryptology ePrint Archieve, p. 101 (2022). https://eprint.iacr.org/2022/101
Itkis, G., Reyzin, L.: Forward-secure signatures with optimal signing and verifying. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 332–354. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44647-8_20
Lai, Y., Chang, C.: A simple forward secure blind signature scheme based on master keys and blind signatures. In: 19th International Conference on Advanced Information Networking and Applications (AINA), pp. 139–144 (2005)
Le, H.Q., et al.: Lattice blind signatures with forward security. In: Liu, J.K., Cui, H. (eds.) ACISP 2020. LNCS, vol. 12248, pp. 3–22. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-55304-3_1
Libert, B., Yung, M.: Dynamic fully forward-secure group signatures. In: Proceedings of the 5th ACM Symposium on Information, Computer and Communications Security, ASIACCS, pp. 70–81 (2010)
Ling, S., Nguyen, K., Wang, H., Xu, Y.: Forward-secure group signatures from lattices. In: Ding, J., Steinwandt, R. (eds.) PQCrypto 2019. LNCS, vol. 11505, pp. 44–64. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25510-7_3
Liu, J.K., Wong, D.S.: Solutions to key exposure problem in ring signature. Int. J. Netw. Secur. 6(2), 170–180 (2008)
Liu, J.K., Yuen, T.H., Zhou, J.: Forward secure ring signature without random oracles. In: Qing, S., Susilo, W., Wang, G., Liu, D. (eds.) ICICS 2011. LNCS, vol. 7043, pp. 1–14. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25243-3_1
Micciancio, D., Peikert, C.: Trapdoors for lattices: simpler, tighter, faster, smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_41
Micciancio, D., Regev, O.: Worst-case to average-case reductions based on gaussian measures. SIAM J. Comput. 37(1), 267–302 (2007)
Nakanishi, T., Hira, Y., Funabiki, N.: Forward-secure group signatures from pairings. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 93-A(11), 2007–2016 (2010)
Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1_32
Shacham, H., Waters, B.: Efficient ring signatures without random oracles. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 166–180. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71677-8_12
Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: 35th Annual Symposium on Foundations of Computer Science, pp. 124–134 (1994)
Tang, F., Li, H.: Ring signatures of constant size without random oracles. In: Lin, D., Yung, M., Zhou, J. (eds.) Inscrypt 2014. LNCS, vol. 8957, pp. 93–108. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16745-9_6
Wang, J., Sun, B.: Ring signature schemes from lattice basis delegation. In: Qing, S., Susilo, W., Wang, G., Liu, D. (eds.) ICICS 2011. LNCS, vol. 7043, pp. 15–28. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25243-3_2
Yu, J., Hao, R., Kong, F., Cheng, X., Fan, J., Chen, Y.: Forward-secure identity-based signature: security notions and construction. Inf. Sci. 181(3), 648–660 (2011)
Yu, X., Wang, Y.: A lattice-based ring signature scheme secure against key exposure. Cryptology ePrint Archive, Paper 2022/1432 (2022). https://eprint.iacr.org/2022/1432
Acknowledgment
This work is supported by Fundamental Research Program of Shanxi Province (20210302124273, 20210302123130), Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (2021L038), National Natural Science Foundation of China (62072240), China; and JSPS KAKENHI Grant Number JP20K23322, JP21K11751, Japan.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Yu, X., Wang, Y. (2023). Forward Secure Lattice-Based Ring Signature Scheme in the Standard Model. In: Wang, D., Yung, M., Liu, Z., Chen, X. (eds) Information and Communications Security. ICICS 2023. Lecture Notes in Computer Science, vol 14252. Springer, Singapore. https://doi.org/10.1007/978-981-99-7356-9_9
Download citation
DOI: https://doi.org/10.1007/978-981-99-7356-9_9
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-7355-2
Online ISBN: 978-981-99-7356-9
eBook Packages: Computer ScienceComputer Science (R0)