Skip to main content

Prediction and Analysis of Acoustic Displacement Field Using the Method of Neural Network

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1961))

Included in the following conference series:

  • 776 Accesses

Abstract

Micro/nano manipulation technology holds significant value in diverse fields, such as biomedicine, precision killing, and material chemistry. Among these applications, acoustic manipulation technology stands out as a crucial approach for micro/nano manipulation. However, the determination of a control equation for acoustic manipulation proves challenging due to the complex motion characteristics exhibited by micro/nano targets. The mastery of acoustic displacement field information is essential for successful manipulation of micro targets. Addressing this challenge, this paper presents a novel method that utilizes neural networks for predicting sound wave displacement fields. Which involves collecting raw data on acoustic displacement changes under specific excitation frequencies and times utilizing the acoustic manipulation experimental platform. Using the data to train the neural network model. The network takes the initial position information of the micro target as input and accurately predicts the displacement field across the entire thin plate area, achieving a remarkable prediction accuracy of 0.5mm. Through a comprehensive analysis of the network’s prediction performance using test set data, the effectiveness of the designed network in solving the acoustic displacement field problem with high accuracy is demonstrated. This research significantly contributes to the advancement of acoustic manipulation technology, enabling precise control and manipulation of micro/nano targets across various applications.

Supported by College of Artificial Intelligence, Nankai University.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang, S., Chen, Y., Zhang, L., et al.: Study on Robot Grasping System of SSVEP-BCI based on augmented reality stimulus. Tsinghua Sci. Technol. 28(2), 322–329 (2023)

    Article  Google Scholar 

  2. Liu, S., Wang, L., Wang, X. V: Multimodal data-driven robot control for human-robot collaborative assembly. J. Manuf. Sci. Eng. Trans. ASME 2022(5), 144 (2022)

    Google Scholar 

  3. Zhou, L., Zhang, L: A novel convolutional neural network for electronic component classification with diverse backgrounds. Int. J. Model. Simul. Sci. Comput. 2022(1), 13 (2022)

    Google Scholar 

  4. Chen, L., Gan, W., Chen, L., et al.: Optical encryption technology based on spiral phase coherent superposition and vector beam generation system. Optik 2022(253), 168599 (2022)

    Google Scholar 

  5. Rebbah, R., Messaoudene, I., Khelifi, M., et al.: Enhanced isolation of MIMO cavity antenna using substrate integrated waveguide technology. Microwave Optical Technol. Lett. 2022(2), 64 (2022)

    Google Scholar 

  6. Zhang, W., Wei, X., Chen, L., et al.: Axial uniformity diagnosis of coaxial surface wave linear plasma by optical emission spectroscopy. Plasma Sci. Technol. 24(2), 025403 (2022)

    Google Scholar 

  7. Brito, H.H.: Experimental status of thrusting by electromagnetic inertia manipulation. Acta Astronaut. 54(8), 547–558 (2004)

    Article  Google Scholar 

  8. Wang, J., Zhang, Z., Huang, C., et al.: Transmission-reflection-integrated quadratic phase metasurface for multifunctional electromagnetic manipulation in full space. Adv. Optical Mater. 2022(6), 10 (2022)

    Google Scholar 

  9. Li, Z., Zhang, D., Liu, J., et al.: 3-D manipulation of dual-helical electromagnetic wavefronts with a noninterleaved metasurface. IEEE Trans. Antennas Propagation 70(1), 378–388 (2022)

    Google Scholar 

  10. Chen, Q., Meng, Q., Liu, Y., et al.: A digital microfluidic single-cell manipulation system optimized by extending-depth-of-field device. J. Innov. Optical Health Sci. 16(03), 2244006 (2023)

    Google Scholar 

  11. Wu, B., Zhou, J., Guo, Y., et al.: Preparation of HMX/TATB spherical composite explosive by droplet microfluidic technology. Defence Technol. 21(3), 11 (2023)

    Google Scholar 

  12. Wang, T., Ke, M., Li, W., et al.: Particle manipulation with acoustic vortex beam induced by a brass plate with spiral shape structure. Appl. Phys. Lett. 109(12), 2140–2143 (2016)

    Article  Google Scholar 

  13. Liang, S., Liu, J., Lai, Y., et al.: Nonlinear wave propagation in acoustic metamaterials with bilinear nonlinearity. Chinese Phys. B 32(4), 405–411 (2023)

    Article  Google Scholar 

  14. Zma, C., Pfa, B.: Acoustic micro-manipulation and its biomedical applications. Engineering, 1–4 (2022)

    Google Scholar 

  15. Yuan, J., Meng, X., Ran, J., et al.: Manipulation of acoustic wave reflection for arbitrary reflecting surfaces based on acoustic metasurfaces. International Journal of Modern Physics, B. Condensed Matter Phys. Stat. Phys. Appl. Phys. 36(6), 1–10 (2022)

    Google Scholar 

  16. Wu, Z., Pan, M., Wang, J., et al.: Acoustofluidics for cell patterning and tissue engineering. Eng. Regeneration 3(4), 397–406 (2022)

    Article  Google Scholar 

  17. Kozuka, T., Yoshimoto, T., Toyoda, M. : Two-dimensional acoustic manipulation in air using interference of a standing wave field by three sound waves. Japanese J. Appl. Phys. 61, 1–10 (2022)

    Google Scholar 

  18. Qi, Y., He, H., Xiao, M.: Manipulation of acoustic vortex with topological dislocation states. Appl. Phys. Lett. 120(21), 1–5 (2022)

    Article  Google Scholar 

  19. Zha, B., Zz, A., Zl, C., et al.: Particles separation using the inverse Chladni pattern enhanced local Brazil nut effect. Extreme Mech. Lett. 2021(49), 101466 (2021)

    Google Scholar 

  20. Worrell, C, L., Lynch, J, A., Jomaas, G.: Effect of smoke source and horn configuration on enhanced deposition, acoustic agglomeration, and chladni figures in smoke detectors. Fire Technol. 39(4), 309–346 (2003)

    Google Scholar 

  21. Raghu, M.: A study to explore the effects of sound vibrations on consciousness. Int. J. Soc. Work Hum. Serv. Practice 6(3), 75–88 (2018)

    Article  MathSciNet  Google Scholar 

  22. Bardell, N.S.: Chladni figures for completely free parallelogram plates: an analytical study. J. Sound Vib. 174(5), 655–676 (1994)

    Article  MATH  Google Scholar 

  23. Jiao, X., Tao, J., Sun, H., et al.: Kinematic modes identification and its intelligent control of micro-nano particle manipulated by acoustic signal. Mathematics 10(21), 4156 (2022)

    Google Scholar 

  24. Aman, K., Anirvan, D.: Wave-induced dynamics of a particle on a thin circular plate. Nonlinear Dyn. 2021(103), 293–308 (2021)

    Google Scholar 

  25. Lohith, M. S., Manjunath, Y., Eshwarappa, M. N. : Multimodal biometric person authentication using face, ear and periocular region based on convolution neural networks. Int. J. Image Graph. 23(02), 2350019 (2023)

    Google Scholar 

  26. Chang, X. K., He, Y., Gao, Z. M.: Exponential stability of neural networks with a time-varying delay via a cubic function negative-determination lemma. Appl. Math. Comput. 2023(438), 127602 (2023)

    Google Scholar 

  27. Zhang, N., Wang, Y., Zhang, X., et al.: A multi-degradation aided method for unsupervised remote sensing image super resolution with convolution neural networks. IEEE Trans. Geosci. Remote Sens. 2022(20), 1–14 (2022)

    Google Scholar 

  28. Nogueira, I., Dias, R., Rebello, C.M., et al.: A novel nested loop optimization problem based on deep neural networks and feasible operation regions definition for simultaneous material screening and process optimization. Chem. Eng. Res. Des. 2022(180), 243–253 (2022)

    Article  Google Scholar 

  29. Lek, S., Delacoste, M., Baran, P., et al.: Application of neural networks to modelling nonlinear relationships in ecology. Ecol. Model. 90(1), 39–52 (1996)

    Article  Google Scholar 

  30. Kowalski, C.T., Orlowska-Kowalska, T., et al.: Neural networks application for induction motor faults diagnosis. Math. Comput. Simul. 63(3–5), 435–448 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wang, J., Fan, X., Shi, N., et al.: Convolutional neural networks of whole jujube fruits prediction model based on multi-spectral imaging method. Chin. J. Electron. 32(3), 655–662 (2023)

    Article  Google Scholar 

  32. Skrypnik, A.N., Shchelchkov, A.V., Gortyshov, Y.F., et al.: Artificial neural networks application on friction factor and heat transfer coefficients prediction in tubes with inner helical-finning. Appl. Thermal Eng. 2022(206), 118049 (2022)

    Google Scholar 

  33. Atwya, M., Panoutsos, G.: Structure optimization of prior-knowledge-guided neural networks. Neurocomputing 2022, 491 (2022)

    Google Scholar 

  34. Fan, Y.: A Study on Chinese-English machine translation based on migration learning and neural networks. Int. J. Artif. Intell. Tools 31(05), 2250031 (2022)

    Google Scholar 

  35. Serebryanaya, L. V.: Methods for constructing artificial neural networks for data classification. Digital Transformation 28(1), 2250031 (2022)

    Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China (Grant No. 61973172, 62003177, 62103204, 62003175 and 61973175), Joint Fund of the Ministry of Education for Equipment Pre research (Grant No. 8091B022133) and General Terminal IC Interdisciplinary Science Center of Nankai University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hao Sun or Qinglin Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiao, X., Tao, J., Sun, H., Sun, Q. (2024). Prediction and Analysis of Acoustic Displacement Field Using the Method of Neural Network. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Communications in Computer and Information Science, vol 1961. Springer, Singapore. https://doi.org/10.1007/978-981-99-8126-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8126-7_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8125-0

  • Online ISBN: 978-981-99-8126-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy