Abstract
Sign language is a crucial communication carrier among deaf people to express and exchange their thoughts and emotions. However, ordinary individuals cannot acquire proficiency in sign language in the short term, which leads to deaf people facing huge barriers with the sound community. Regarding this conundrum, it is valuable to investigate Sign Language Recognition (SLR) equipped with sensors which collect data for the following computer vision processing. This study has reviewed the sensor-based SLR methods, which can transform heterogeneous signals from various underlying sensors into high-level motion representations. Specifically, we have summarized current developments in sensor-based SLR techniques from the perspective of modalities. Addtionally, we have also distilled the sensor-based SLR paradigm and compared the state-of-the-art works, including computer vision. Following that, we have concluded the research opportunities and future work expectations.
This work was supported in part by the Postgraduate Scientific Research Innovation Practice Program of Tianjin University of Technology (YJ2247).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Abdullah, A., Abdul-Kadir, N.A., Che Harun, F.K.: An optimization of IMU sensors-based approach for Malaysian sign language recognition. In: ICCED, pp. 1–4 (2020)
Alaoui, F., Fourati, H., Kibangou, A., Robu, B., Vuillerme, N.: Kick-scooters identification in the context of transportation mode detection using inertial sensors: methods and accuracy. J. Intell. Transport. Syst. (2023). https://doi.org/10.1080/15472450.2022.2141118
Alosail, D., Aldolah, H., Alabdulwahab, L., Bashar, A., Khan, M.: Smart glove for bi-lingual sign language recognition using machine learning. In: IDCIoT, pp. 409–415 (2023)
Barioul, R., Ghribi, S.F., Ben Jmaa Derbel, H., Kanoun, O.: Four sensors bracelet for American sign language recognition based on wrist force myography. In: CIVEMSA, pp. 1–5 (2020)
Barraza Madrigal, J.A., Contreras Rodríguez, L.A., Cardiel Pérez, E., Hernández Rodríguez, P.R., Sossa, H.: Hip and lower limbs 3D motion tracking using a double-stage data fusion algorithm for IMU/MARG-based wearables sensors. Biomed. Signal Process. Control 86, 104938 (2023)
Ben Haj Amor, A., El Ghoul, O., Jemni, M.: Deep learning approach for sign language’s handshapes recognition from EMG signals. In: ITSIS, pp. 1–5 (2022)
Boukhechba, M., Cai, L., Wu, C., Barnes, L.E.: ActiPPG: using deep neural networks for activity recognition from wrist-worn photoplethysmography (PPG) sensors. Smart Health 14, 100082 (2019)
Chen, H., Feng, D., Hao, Z., Dang, X., Niu, J., Qiao, Z.: Air-CSL: Chinese sign language recognition based on the commercial WiFi devices. Wirel. Commun. Mob. Comput. 2022 (2022). https://doi.org/10.1155/2022/5885475
Choi, J., Hwang, G., Lee, J.S., Ryu, M., Lee, S.J.: Weighted knowledge distillation of attention-LRCN for recognizing affective states from PPG signals. Expert Syst. Appl. 120883 (2023)
Chu, X., Liu, J., Shimamoto, S.: A sensor-based hand gesture recognition system for Japanese sign language. In: LifeTech, pp. 311–312 (2021)
DiFilippo, N.M., Jouaneh, M.K.: Characterization of different Microsoft Kinect sensor models. IEEE Sens. J. 15(8), 4554–4564 (2015)
Dweik, A., Qasrawi, H., Shawar, D.: Smart glove for translating Arabic sign language “SGTArSL”. In: ICCTA, pp. 49–53 (2021)
Fouts, T., Hindy, A., Tanner, C.: Sensors to sign language: a natural approach to equitable communication. In: ICASSP, pp. 8462–8466 (2022)
Galka, J., Masior, M., Zaborski, M., Barczewska, K.: Inertial motion sensing glove for sign language gesture acquisition and recognition. IEEE Sens. J. 16(16), 6310–6316 (2016)
Godiyal, A.K., Singh, U., Anand, S., Joshi, D.: Analysis of force myography based locomotion patterns. Measurement 140, 497–503 (2019)
Gupta, R., Bhatnagar, A.S.: Multi-stage Indian sign language classification with sensor modality assessment. In: ICACCS, vol. 1, pp. 18–22 (2021)
Gurbuz, S.Z., et al.: ASL recognition based on Kinematics derived from a multi-frequency RF sensor network. IEEE Sens. J. 1–4 (2020)
Han, J., Shao, L., Xu, D., Shotton, J.: Enhanced computer vision with Microsoft Kinect sensor: a review. IEEE T. Cybern. 43(5), 1318–1334 (2013)
Hu, H., Wang, W., Zhou, W., Zhao, W., Li, H.: Model-aware gesture-to-gesture translation. In: CVPR, pp. 16423–16432 (2021)
Ji, L., Liu, J., Shimamoto, S.: Recognition of Japanese sign language by sensor-based data glove employing machine learning. In: LifeTech, pp. 256–258 (2022)
Kania, M., Korzeniewska, E., Zawiślak, R., Nikitina, A., Krawczyk, A.: Wearable solutions for the sign language. In: MEES, pp. 1–4 (2022)
Kudrinko, K., Flavin, E., Zhu, X., Li, Q.: Wearable sensor-based sign language recognition: a comprehensive review. IEEE Rev. Biomed. Eng. 14, 82–97 (2021)
Kumar, P., Gauba, H., Roy, P.P., Dogra, D.P.: A multimodal framework for sensor based sign language recognition. Neurocomputing 259(SI), 21–38 (2017)
Kwon, J., Nam, H., Chae, Y., Lee, S., Kim, I.Y., Im, C.H.: Novel three-axis accelerometer-based silent speech interface using deep neural network. Eng. Appl. Artif. Intell. 120, 105909 (2023)
Liu, C., Liu, J., Shimamoto, S.: Sign language estimation scheme employing Wi-Fi signal. In: SAS, pp. 1–5 (2021)
Ma, Y., Zhao, S., Wang, W., Li, Y., King, I.: Multimodality in meta-learning: a comprehensive survey. Knowl.-Based Syst. 250, 108976 (2022)
Maharjan, P., et al.: A human skin-inspired self-powered flex sensor with thermally embossed microstructured triboelectric layers for sign language interpretation. Nano Energy 76, 105071 (2020)
Mitra, S., Acharya, T.: Gesture recognition: a survey. IEEE Trans. Syst. Man Cybern.-Syst. 37(3), 311–324 (2007)
Muralidharan, N.T., Rohidh, M.R., Harikumar, M.E.: Modelling of sign language smart glove based on bit equivalent implementation using flex sensor. In: WiSPNET, pp. 99–104 (2022)
Nhu, C.T., Dang, P.N., Thanh, V.N.T., Thuy, H.T.T., Thanh, V.D., Thanh, T.B.: A sign language recognition system using ionic liquid strain sensor. In: ISMEE, pp. 263–267 (2021)
Qahtan, S., Alsattar, H.A., Zaidan, A.A., Deveci, M., Pamucar, D., Martinez, L.: A comparative study of evaluating and benchmarking sign language recognition system-based wearable sensory devices using a single fuzzy set. Knowl.-Based Syst. 269, 110519 (2023)
Qin, Y., Pan, S., Zhou, W., Pan, D., Li, Z.: WiASL: American sign language writing recognition system using commercial WiFi devices. Measurement 218, 113125 (2023)
Rakun, E., Andriani, M., Wiprayoga, I.W., Danniswara, K., Tjandra, A.: Combining depth image and skeleton data from Kinect for recognizing words in the sign system for Indonesian language (SIBI [Sistem Isyarat Bahasa Indonesia]). In: ICACSIS, pp. 387–392 (2013)
Rashid, A., Hasan, O.: Wearable technologies for hand joints monitoring for rehabilitation: a survey. Microelectron. J. 88, 173–183 (2019)
Saggio, G., Riillo, F., Sbernini, L., Quitadamo, L.R.: Resistive flex sensors: a survey. Smart Mater. Struct. 25(1), 013001 (2016)
Saif, R., Ahmad, M., Naqvi, S.Z.H., Aziz, S., Khan, M.U., Faraz, M.: Multi-channel EMG signal analysis for Italian sign language interpretation. In: ICETST, pp. 1–5 (2022)
Sarkar, B., Takeyeva, D., Guchhait, R., Sarkar, M.: Optimized radio-frequency identification system for different warehouse shapes. Knowl.-Based Syst. 258, 109811 (2022)
Sharma, A., Ansari, M.Z., Cho, C.: Ultrasensitive flexible wearable pressure/strain sensors: parameters, materials, mechanisms and applications. Sens. Actuat. A 347, 113934 (2022)
Subedi, B., Dorji, K.U., Wangdi, P., Dorji, T., Muramatsu, K.: Sign language translator of Dzongkha alphabets using Arduino. In: i-PACT, pp. 1–6 (2021)
Suri, A., Singh, S.K., Sharma, R., Sharma, P., Garg, N., Upadhyaya, R.: Development of sign language using flex sensors. In: ICOSEC, pp. 102–106 (2020)
Sze, F.: From gestures to grammatical non-manuals in sign language: a case study of polar questions and negation in Hong Kong sign language. Lingua 267, 103188 (2022)
Ul Islam, M.R., Bai, S.: A novel approach of FMG sensors distribution leading to subject independent approach for effective and efficient detection of forearm dynamic movements. Biomed. Eng. Adv. 4, 100062 (2022)
Venugopalan, A., Reghunadhan, R.: Applying deep neural networks for the automatic recognition of sign language words: a communication aid to deaf agriculturists. Expert Syst. Appl. 185, 115601 (2021)
Wang, Z., et al.: Hear sign language: a real-time end-to-end sign language recognition system. IEEE Trans. Mob. Comput. 21(7), 2398–2410 (2022)
Wu, J., Sun, L., Jafari, R.: A wearable system for recognizing American sign language in real-time using IMU and surface EMG sensors. IEEE J. Biomed. Health Inform. 20(5, SI), 1281–1290 (2016)
Yang, H.D.: Sign language recognition with the Kinect sensor based on conditional random fields. IEEE Sens. J. 15(1), 135–147 (2015)
Yang, X., Chen, X., Cao, X., Wei, S., Zhang, X.: Chinese sign language recognition based on an optimized tree-structure framework. IEEE J. Biomed. Health Inform. 21(4), 994–1004 (2017)
Zhang, N., Zhang, J., Ying, Y., Luo, C., Li, J.: Wi-phrase: deep residual-multihead model for WiFi sign language phrase recognition. IEEE Internet Things J. 9(18), 18015–18027 (2022)
Zhang, Y., Xu, W., Zhang, X., Li, L.: Sign annotation generation to alphabets via integrating visual data with somatosensory data from flexible strain sensor-based data glove. Measurement 202, 111700 (2022)
Zhao, T., Liu, J., Wang, Y., Liu, H., Chen, Y.: Towards low-cost sign language gesture recognition leveraging wearables. IEEE Trans. Mob. Comput. 20(4), 1685–1701 (2021)
Zhou, H., Zhou, W., Zhou, Y., Li, H.: Spatial-temporal multi-cue network for sign language recognition and translation. IEEE Trans. Multimed. 24, 768–779 (2022)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Yang, T., Shen, C., Wang, X., Ma, X., Ling, C. (2024). A Survey: The Sensor-Based Method for Sign Language Recognition. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14430. Springer, Singapore. https://doi.org/10.1007/978-981-99-8537-1_21
Download citation
DOI: https://doi.org/10.1007/978-981-99-8537-1_21
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-8536-4
Online ISBN: 978-981-99-8537-1
eBook Packages: Computer ScienceComputer Science (R0)