Skip to main content

Penalty-Aware Memory Loss for Deep Metric Learning

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14431))

Included in the following conference series:

Abstract

This paper focus on the deep metric learning, which has been widely used in various multimedia tasks. One popular solution is to learn a suitable distance metric by using triplet loss terms with sophisticated sampling strategies, However, existing schemes usually do not well consider global data distributions, which makes the learned metric suboptimal. In this paper, we address this problem by proposing a Penalty-Aware Memory Loss (PAML) that fully utilizes the expressive power of the combination of both global data distribution and local data distribution to learn a high-quality metric. In particular, we first introduce a memory bank to build the category prototype, that can capture the global geometric structure of data from the training data. The memory bank allows imposing a penalty regularizer during the training procedure without significantly increasing computational complexity. Subsequently, a new triplet loss with softmax is defined to learn a new metric space via the classical SGD optimizer. Experiments on four widely used benchmarks demonstrate that the proposed PAML outperforms state-of-the-art methods, which is effective and efficient to improve image-level deep metric learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Artsiom, S., Vadim, T., Uta, B., Bjorn, O.: Divide and conquer the embedding space for metric learning. In: CVPR, pp. 471–480 (2019)

    Google Scholar 

  2. Ben, H., BG, K., Gustavo, C., Ian, R., Tom, D., et al.: Smart mining for deep metric learning. In: ICCV, pp. 2821–2829 (2017)

    Google Scholar 

  3. Deng, J., Guo, J., Xue, N., Stefanos, Z.: Arcface: additive angular margin loss for deep face recognition. In: CVPR, pp. 4690–4699 (2019)

    Google Scholar 

  4. Duan, Y., Zheng, W., Lin, X., Lu, J., Zhou, J.: Deep adversarial metric learning. In: CVPR, pp. 2780–2789 (2018)

    Google Scholar 

  5. Fatih, C., He, K., Xia, X., Brian, K., Stan, S.: Deep metric learning to rank. In: CVPR, pp. 1861–1870 (2019)

    Google Scholar 

  6. Feng, J., Wu, A., Zheng, W.S.: Shape-erased feature learning for visible-infrared person re-identification. In: CVPR, pp. 22752–22761 (2023)

    Google Scholar 

  7. Florian, S., Dmitry, K., James, P.: Facenet: a unified embedding for face recognition and clustering. In: CVPR, pp. 815–823 (2015)

    Google Scholar 

  8. Ge, W.: Deep metric learning with hierarchical triplet loss. In: ECCV, pp. 269–285 (2018)

    Google Scholar 

  9. Hong, X., Richard, S., Robert, P.: Deep randomized ensembles for metric learning. In: ECCV, pp. 723–734 (2018)

    Google Scholar 

  10. Hyun, O., Xiang, Y., Stefanie, J., Silvio, S.: Deep metric learning via lifted structured feature embedding. In: CVPR, pp. 4004–4012 (2016)

    Google Scholar 

  11. Jonathan, K., Michael, S., Deng, J., Li, F.: 3D object representations for fine-grained categorization. In: ICCV Workshops, pp. 554–561 (2013)

    Google Scholar 

  12. Karsten, R., Biagio, B., Bjorn, O.: MIC: mining interclass characteristics for improved metric learning. In: ICCV, pp. 8000–8009 (2019)

    Google Scholar 

  13. Kihyuk, S.: Improved deep metric learning with multi-class n-pair loss objective. In: NeurIPS, pp. 1857–1865 (2016)

    Google Scholar 

  14. Kim, M., Jain, A.K., Liu, X.: Adaface: quality adaptive margin for face recognition. In: CVPR, pp. 18750–18759 (2022)

    Google Scholar 

  15. Kim, M., Liu, F., Jain, A., Liu, X.: DCFace: synthetic face generation with dual condition diffusion model. In: CVPR, pp. 12715–12725 (2023)

    Google Scholar 

  16. Laurens, V.: Accelerating t-SNE using tree-based algorithms. JMLR 15(93), 3221–3245 (2014)

    MathSciNet  Google Scholar 

  17. Lin, X., et al.: Learning modal-invariant and temporal-memory for video-based visible-infrared person re-identification. In: CVPR, pp. 20973–20982 (2022)

    Google Scholar 

  18. Liu, Z., Luo, P., Qiu, S., Wang, X., Tang, X.: Deepfashion: powering robust clothes recognition and retrieval with rich annotations. In: CVPR, pp. 1096–1104 (2016)

    Google Scholar 

  19. Michael, O., Georg, W., Horst, P., Horst, B.: Bier-boosting independent embeddings robustly. In: ICCV, pp. 5189–5198 (2017)

    Google Scholar 

  20. Michael, O., Georg, W., Horst, P., Horst, B.: Deep metric learning with bier: Boosting independent embeddings robustly. IEEE TPAMI 42(2), 276–290 (2018)

    Google Scholar 

  21. Shen, Y., Sun, X., Wei, X.S.: Equiangular basis vectors. In: CVPR, pp. 11755–11765 (2023)

    Google Scholar 

  22. Sumit, C., Raia, H., Yann, L., et al.: Learning a similarity metric discriminatively, with application to face verification. In: CVPR, vol. 1, pp. 539–546 (2005)

    Google Scholar 

  23. Sun, Y., et al.: Circle loss: a unified perspective of pair similarity optimization. In: CVPR, pp. 6398–6407 (2020)

    Google Scholar 

  24. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The Caltech-UCSD birds-200-2011 dataset (2011)

    Google Scholar 

  25. Wang, C., Zheng, W., Li, J., Zhou, J., Lu, J.: Deep factorized metric learning. In: CVPR, pp. 7672–7682 (2023)

    Google Scholar 

  26. Wang, F., Xiang, X., Cheng, J., Yuille, A.L.: Normface: L2 hypersphere embedding for face verification. In: ACM MM, pp. 1041–1049 (2017)

    Google Scholar 

  27. Wonsik, K., Bhavya, G., Kunal, C., Jungmin, L., Keunjoo, K.: Attention-based ensemble for deep metric learning. In: ECCV, pp. 736–751 (2018)

    Google Scholar 

  28. Xiong, J., Lai, J.: Similarity metric learning for RGB-infrared group re-identification. In: CVPR, pp. 13662–13671 (2023)

    Google Scholar 

  29. Yair, M., Alexander, T., K, L.T., Sergey, I., Saurabh, S.: No fuss distance metric learning using proxies. In: ICCV, pp. 360–368 (2017)

    Google Scholar 

  30. Yang, H., Chu, X., Zhang, L., Sun, Y., Li, D., Maybank, S.J.: Quadnet: quadruplet loss for multi-view learning in baggage re-identification. Pattern Recogn. 126, 108546 (2022)

    Article  Google Scholar 

  31. Yang, M., Huang, Z., Hu, P., Li, T., Lv, J., Peng, X.: Learning with twin noisy labels for visible-infrared person re-identification. In: CVPR, pp. 14308–14317 (2022)

    Google Scholar 

  32. Yu, B., Tao, D.: Deep metric learning with tuplet margin loss. In: ICCV, pp. 6490–6499 (2019)

    Google Scholar 

  33. Yuan, Y., Yang, K., Zhang, C.: Hard-aware deeply cascaded embedding. In: ICCV, pp. 814–823 (2017)

    Google Scholar 

  34. Zheng, W., Chen, Z., Lu, J., Zhou, J.: Hardness-aware deep metric learning. In: CVPR, pp. 72–81 (2019)

    Google Scholar 

  35. Zheng, X., Ji, R., Sun, X., Y. Wu, Y.Y., Huang, F.: Towards optimal fine grained retrieval via decorrelated centralized loss with normalize-scale layer. In: AAAI, vol. 33, pp. 9291–9298 (2019)

    Google Scholar 

Download references

Acknowledgement

This work was supported by National Key R &D Program of China (No. 2022ZD0118202), the National Science Fund for Distinguished Young Scholars (No. 62025603), the National Natural Science Foundation of China (No. U21B2037, No. U22B2051, No. 62176222, No. 62176223, No. 62176226, No. 62072386, No. 62072387, No. 62072389, No. 62002305 and No. 62272401), and the Natural Science Foundation of Fujian Province of China (No. 2021J01002, No. 2022J06001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianming Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, Q., Li, R., Lin, X. (2024). Penalty-Aware Memory Loss for Deep Metric Learning. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14431. Springer, Singapore. https://doi.org/10.1007/978-981-99-8540-1_37

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8540-1_37

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8539-5

  • Online ISBN: 978-981-99-8540-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy