Skip to main content
Log in

Mutational equations of the morphological dilation tubes

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

The present paper provides some differential results dealing with the morphological dilation of a compact set in the nonregular case. Indeed the evolution of dilated sets with respect to time is characterized through mutational equations which are new mathematical tools extending the concept of differential equations to the metric space of all nonempty compact sets of ℝn. Using this new tool, we prove that the mutation of the dilation is the normal cone which is a generalization of the classical notion of normal. This result clearly establishes that the dilation transforms this initial set in the direction of the normal at any point of the set. Furthermore, it does not require any regularity assumptions on the compact set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. L. Alvarez, F. Guichard, P.L. Lions, and J.M. Morel, “Axiomatisation et nouveaux opérateurs de la morphologie mathématique,”C.R. Acad. Sci. Paris, pp. 265–268, t. 315, Série I, 1992.

    Google Scholar 

  2. J.-P. Aubin,Viability theory, Birkhauser, Systems and Control: Foundations and Applications, 1991.

  3. J.-P. Aubin,Morphological and Mutational Analysis, Tools for Shape Regulation and Optimization, Commett Matari Programme, CEREMADE, University of Paris-Dauphine, France, 1993.

    Google Scholar 

  4. J.-P. Aubin, “Mutational Equations in Metric Spaces,”Set-Valued Analysis, 1:3–46, 1993.

    Google Scholar 

  5. J.-P. Aubin,Initiation à l'analyse contemporaine, Masson, Paris, France, 1994.

    Google Scholar 

  6. J.-P. Aubin and A. Cellina,Differential Inclusions (Set-valued maps and viability theory), Springer-Verlag, 1984.

  7. J.-P. Aubin and H. Frankowska,Set-Valued Analysis, Birkhauser, 1990. Systems and Control: Foundations and Applications.

  8. R. van den Boomgaard,Mathematical Morphology:Extensions towards Computer Vision, PhD thesis, Amsterdam University, The Netherlands, Mar. 1992.

    Google Scholar 

  9. R. Brockett and P. Maragos, “Evolution equations for continuous-scale morphology,” inIEEE Conference on Acoustics, Speech and Signal Processing, San Francisco CA, March 1992.

  10. F.H. Clarke,Optimization and Nonsmooth Analysis, Wiley-Interscience, 1983.

  11. L. Doyen, “Evolution, contrôle et optimisation de formes,” Thèse de Doctorat, Université Paris-Dauphine, Paris, France, Juin 1993.

    Google Scholar 

  12. L. Doyen, “Filippov and invariance theorems for mutational inclusions of tubes,”Journal of Set-Valued Analysis, 1:283–303, 1993.

    Google Scholar 

  13. L. Doyen, “Inverse Function Theorems and Shape Optimization,”S.I.A.M Journal on Control and Optimization, Vol. 184, No. 2, June, 1994.

  14. L. Doyen, “Mutational Equation for Tube and Vison Based Control,”Set Valued Analysis, (to appear).

  15. L. Doyen, “Shape Lyapunov Functions and visual Servoing,”Journal of Mathematical Analysis and Applications, Vol. 32, No. 6, pp. 1621–1642, Nov., 1994.

    Google Scholar 

  16. L. Doyen, L. Najman, and J. Mattioli, “Mutational equations of morphological dilation tubes,” in J. Serra and P. Soille (Eds.),Mathematical Morphology and its Applications to Image Processing, pp. 13–20, Kluwer Academic Publishers, 1994.

  17. H. Frankowska,Control of nonlinear systems and differential inclusions, Birkhäuser, (to appear).

  18. G. Matheron,Random Sets and Integral Geometry, John Wiley and Sons, New York, 1975.

    Google Scholar 

  19. J. Mattioli, “Differential Inclusions for Mathematical Morphology,” inSPIE: Image Algebra and Morphological Image Processing IV, Vol. 2030, pp. 12–23, San Diego, July 11–16, 1993.

  20. J. Mattioli, “Differential Relations of Morphological Operators,” inMathematical Morphology and its Applications to Signal Processing, pp. 162–167, Barcelona, Spain, May 12–14, 1993.

  21. J. Mattioli,Problèmes inverses et relations différentielles en morphologie mathématique, Thèse de Doctorat, Université Paris Dauphine, Paris, France, Mai 1993.

    Google Scholar 

  22. J. Mattioli, “Relations différentielles d'opérations de la morphologie mathématique,”C.R. Acad. Sci. Paris, t. 316, Série I:879–884, 1993.

    Google Scholar 

  23. H. Minkowski, “Volumen und Oberfläche,”Math. Ann., 57:447–495, 1903.

    Google Scholar 

  24. L. Najman,Morphologie Mathématique: de la Segmentation d'Images à l'Analyse Multivoque. Thèse de doctorat, Université Paris-Dauphine, Paris, France, Avril 1994.

    Google Scholar 

  25. R.T. Rockafellar and R. Wets,Variational Analysis, Springer-Verlag, (to appear), 1994.

  26. M. Schmitt, “Des algorithms morphologiques à l'intelligence artificielle,” Thèse Ecole des Mines de Paris, February 1989.

  27. M. Schmitt, “Geodesic arcs in non-euclidean metrics: Application to the propagation function,”Revue d'Intelligence Artificielle, 3(2):43–76, 1989.

    Google Scholar 

  28. M. Schmitt and J. Mattioli,Morphologie Mathématique, Logique—Mathématiques—Informatique, Masson, Décembre 1993.

  29. J. Serra,Image Analysis and Mathematical Morphology, Academic Press, London, 1982.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doyen, L., Najman, L. & Mattioli, J. Mutational equations of the morphological dilation tubes. J Math Imaging Vis 5, 219–230 (1995). https://doi.org/10.1007/BF01248373

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01248373

Keywords

Navigation

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy