Abstract
Let {P n } be a sequence of orthogonal polynomials with respect to the measuredμ on the unit circle and letP n =P n +Σ =1l j λ nj P n−j forn≥l, whereλ n,j ∈ ℂ. It is shown that the sequence of linear combinations {P n },n≥2l, is orthogonal with respect to a positive measuredσ if and only ifdσ is a Bernstein-Szegö measure anddμ is the product of a unique trigonometric polynomial and the Bernstein-Szegö measuredσ. Furthermore for a given sequence ofP n 's an algorithm for the calculation of the λ n,j 's is provided.
Similar content being viewed by others
References
A. Branquinho and F. Marcellán,Generating new classes of orthogonal polynomials, Int. J. Math. and Math. Sciences, 19(4) (1996) 643–656.
T. Erdelyi, J.S. Geronimo, P. Nevai and J. Zhang,A simple proof of “Favard's Theorem” on the unit circle, Atti. Sem. Mat. Fis. Univ. Modena 29 (1991) 41–46.
G. Freud,Orthogonal Polynomials, Akademiai Kiadó and Pergamon Press, New York, 1971.
Ya.L. Geronimus,Polynomials orthogonal on a circle and their applications, Amer. Math. Soc. Transl. (1) vol. 3, Providence R.I., 1962, 1–78.
E. Godoy and F. Marcellán,Orthogonal polynomials and rational modifications of measures, Canad. J. Math. 45(5) (1993) 930–943.
M.E.H. Ismail and R.W. Ruedemann,Relation between polynomials on the unit circle with respect to different weights, J. Approx. Theory 71 (1992) 39–60.
E.M. Nikishin and V.N. Sorokin,Rational Approximations and Orthogonality, Transl. of Math. Monog. vol. 92. Amer. Math. Soc., 1991.
F. Peherstorfer,Linear combinations of orthogonal polynomials generating positive quadrature formulas, Math. of Comp. 55(191) (1990) 231–241.
F. Peherstorfer,Zeros of linear combinations of orthogonal polynomials, Proc. Cambridge Math. Soc. 117 (1995) 533–544.
F. Peherstorfer,A special class of polynomials orthogonal on the unit circle including the associated polynomials, J. Constr. Approx., 12 (1996) 161–186.
F. Peherstorfer and R. Steinbauer,Characterization of general orthogonal polynomials with respect to a functional, J. Comput. Appl. Math., 65 (1996) 339–355.
F. Peherstorfer and R. Steinbauer,Perturbation of orthogonal polynomials on the unit circle — a survey, Proc. Workshop on orthogonal polynomials on the unit circle. eds. M. Alfaro et al., Universidad Carlos III de Madrid (1994) 97–119.
J. Shohat,On mechanical quadratures, in particular, with positive coefficients, Trans. Amer. Math. Soc. 42 (1937) 461–496.
Author information
Authors and Affiliations
Additional information
Communicated by S. Seatzu
Supported by Dirección General de Investigación Cientifica y Técnica (DGICYT) of Spain and Österreichischer Akademischer Austauschdienst of Austria with grant 4B/1995.
Also supported by the Austrian Fonds zur Förderung der wissenschaftlichen Forschung, project-number P9267-PHY.
Rights and permissions
About this article
Cite this article
Marcellán, F., Peherstorfer, F. & Steinbauer, R. Orthogonality properties of linear combinations of orthogonal polynomials. Adv Comput Math 5, 281–295 (1996). https://doi.org/10.1007/BF02124748
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02124748