Summary
If the RevisedGram-Schmidt method is used for orthonormalizing a given set of sparse vectors, then it is shown that the local fill-in of non-zero elements at each stage can be easily determined. This makes it possible to rearrange the remaining vectors at each stage such that the local fill-in is minimized. It is also shown that a similar method can also be used in the case of theHouseholder triangularization method.
Zusammenfassung
Wenn die revidierteGram-Schmidt-Methode in der Orthonormalisierung einer gegebenen Menge magerer Vektoren angewendet wird, so kann die lokale Füllung von Nicht-Null-Elementen bei jedem Schrift leicht bestimmt werden. Dies ermöglicht eine Neuordnung der verbleibenden Vektoren bei jedem Schrift, die dann eine möglichst kleine lokale Füllung ergibt. Es wird hier ferner gezeigt, daß eine ähnliche Methode auch im Fall derHouseholder-Triangulisierungsmethode verwendet werden kann.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Davis, P. J.: Orthonormalizing Codes in Numerical Analysis. Survey of Numerical Analysis, J. Todd, ed., p. 347–379. New York: McGraw-Hill 1962.
Rice, J. H.: Experiments onGram-Schmidt Orthonormalization. Math. Comp.94, 325–328 (1966).
Jordan, T. L.: Experiments on Error Growth Associated with some Linear Least-Square Procedures. Math. Comp.103, 579–588 (1968).
Tewarson, R. P.: On the Orthonormalization of Sparse Vectors. Computing4, 268–279 (1968).
Householder, A. S.: The Theory of Matrices in Numerical Analysis, p. 133–139. New York: Blaisdell Publishing Co. 1964.
Tewarson, R. P.: Computations with Sparse Matrices. SIAM Rev.4, 527–543 (1970).
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Chen, Y.T., Tewarson, R.P. On the fill-in when sparse vectors are orthonormalized. Computing 9, 53–56 (1972). https://doi.org/10.1007/BF02236376
Issue Date:
DOI: https://doi.org/10.1007/BF02236376