Abstract
The least-squares finite element method for first order systems corresponding to second order linear two-point boundary value problems is considered. A theoretical analysis and error estimates are developed and the estimates are seen to be consistent with our previous numerical studies in Carey and Shen [5]. The method is not subject to the LBB condition and we consider, in particular, the estimates when the polynomial degree differs for the corresponding variables. Superconvergence estimates are also developed.
Zusammenfassung
Die Methode der kleinsten Fehlerquadrate wird bei gemischten finiten Elementen für die Differentialgleichungen erster Ordnung angewandt, die den linearen elliptischen 1-D Randwertaufgaben zweiter Ordnung entsprechen. Es werden theoretische Untersuchungen vorgestellt und Fehlerabschätzungen vorgenommen. Diese sind mit den früther von Carey and Shen [5] veröffentlichten numerischen Analysen konsistent. Die LBB Bedingung ist nicht notwendig und es werden Abschätzungen für verschiedene Grade der Austatz-Polynome vorgenommen. Superkonvergente Abschätzungen werden ebenso vorgestellt.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bramble, J. H., Hilbert, S. R.: Estimation of linear functionals on Sobolev spaces with application to Fourier transforms and spline interpolation. SIAM J. Numer. Anal.7, 113–124 (1970).
Brezzi, F.: On the existence, uniqueness and approximation of sadle point problems arising from lagrangian multipliers. RAIRO Sér. Anal. Numér.8, no. R-2, 129–151 (1974).
Carey, G. F., Humphrey, D., Wheeler, M. F.: Galerkin and collocation-Galerkin methods with superconvergence and optimal fluxes. Int. J. Numer. Meth. Engrg.17, 939–950 (1981).
Carey, G. F., Oden, J. T.: Finite elements: A second course. Englewood Cliffs, N.J.: Prentice Hall 1983.
Carey, G. F., Shen, Y.: Convergence studies of least squares finite elements for first-order systems. Comm. Appl. Numer. Meth.5, 427–434 (1989).
Ciarlet, P. G.: The finite element method for elliptic problems. Amsterdam, New York, Oxford: North-Holland 1978.
Douglas, J. Jr., Dupont, T.: Galerkin approximations for the two points boundary problem using continuous, piecewise polynomial spaces. Numer. Math.22, 99–109 (1974).
Dupont, T.: A unified theory of superconvergence for Galerkin methods for two-point boundary value problems. SIAM J. Numer. Anal.13, 362–368 (1976).
Grisvard, P.: Elliptic problems in nonsmooth domains. London: Pitman 1985.
Jiang B. N., Chang, C. L.: Least-squares finite elements for the stokes problem. Comp. Meth. Appl. Mech. Engrng.78, 297–317 (1990).
Strang, G., Fix, G.: An analysis of the finite element method. Englewood Cliffs, N.J.: Prentice Hall 1973
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Pehlivanov, A.I., Carey, G.F., Lazarov, R.D. et al. Convergence analysis of least-squares mixed finite elements. Computing 51, 111–123 (1993). https://doi.org/10.1007/BF02243846
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02243846