Skip to main content

Advertisement

Log in

Kognitive Lernermodellierung

Cognitive learner modeling

  • Published:
Kognitionswissenschaft

Abstract

Different types of learner models and their usefulness for tutoring have been discussed widely since the beginning of intelligent tutoring systems. In this paper we compare pragmatic and cognitive approaches of learner modeling. Pragmatic approaches consider relevant learner features for adaptive methods in learning environments and adapt different aspects of instruction to a restricted model representing these features. Cognitive approaches aim for a psychologically adequate modeling of human problem solving. We introduce the case-based learner model ELM as an example of a cognitive approach to learner modeling. The learning environments ELM-PE and ELM-ART use ELM for adaptional methods on conceptual, plan, and episodic levels and provide individual help and learning support. Especially in the case of integrated learning environments like ELM-ART which support a variety of learning activities, a combination of pragmatic and cognitive learner models is proposed to be a necessary and useful solution.

Zusammenfassung

Seit Beginn der Entwicklung tutorieller Systeme ist die Art der Modellierung von Lernenden in der Diskussion gewesen. In diesem Beitrag sollen pragmatische und kognitive Ansätze der Lernermodellierung diskutiert und kontrastiert werden. Während pragmatische Ansätze von einer Beschreibung des Zusammenhanges relevanter Eigenschaften von Lernenden und den Anpassungen eines adaptiven Lehr/Lernsystems ausgehen und die Information über Lernende auf einige für die Anpassungen relevante Dimensionen reduzieren, liegt die Betonung kognitiver Ansätze auf einer wissenspsychologisch adäquaten Modellierung der Fertigkeiten menschlicher Problemlöser. Als Beispiel für ein kognitives Lernermodell wird das fallbasierte Modell ELM vorgestellt. Die zwei Lehr/Lernsysteme ELM-PE und ELM-ART nutzen konzeptuelles Wissen, Planwissen und episodische Information des ELM-Modells zur individuellen Unterstützung von Lernaktivitäten. Besonders in integrierten Lehr/Lernumgebungen wie ELM-ART, in denen unterschiedlichste passive und aktive Lernprozesse unterstützt werden, wird eine Integration verschiedener Ansätze zur Lernermodellierung notwendig und nutzbringend.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Literatur

  • Anderson, J.R. (1983). The architecture of cognition. Cambridge, MA: Harvard University Press

    Google Scholar 

  • Anderson, J.R. (1990). The adaptive character of thought. Hillsdale, NJ: Lawrence Erlbaum Associates

    Google Scholar 

  • Anderson, J. R., Conrad, F.G. & Corbett, A.T. (1989). Skill acquisition and the LISP tutor. Cognitive Science 13, 467–505

    Article  Google Scholar 

  • Anderson, J. R., Corbett, A.T., Koedinger, K.R. & Pelletier, R. (1995). Cognitive tutors: Lessons learned. The Journal of the Learning Sciences 4, 167–207

    Article  Google Scholar 

  • Brusilovsky, P. (1996). Methods and techniques of adaptive hypermedia. User Models and User Adapted Interaction 6, 89–127

    Google Scholar 

  • Brusilovsky, P. (1996). Adaptive hypermedia, an attempt to analyze and generalize. In: P. Brusilovsky, P. Kommers & N. Streitz (eds.), Multimedia, Hypermedia, and Virtual Reality. Lecture Notes in Computer Science, Vol. 1077. Berlin: Springer

    Chapter  Google Scholar 

  • Brusilovsky, P., Schwarz, E. & Weber, G. (1996). ELM-ART: An intelligent tutoring system on World Wide Web. In: C. Frasson, G. Gauthier & A. Lesgold (eds.), Intelligent Tutoring Systems. Proceedings of the Third International Conference, ITS,96 (pp. 261–269). Lecture Notes in Computer Science, Vol. 1086. Berlin: Springer

    Chapter  Google Scholar 

  • Brusilovsky, P., Specht, M. & Weber, G. (1995). Towards adaptive learning environments. In:F. Huber-Wäschle, H. Schauer & P. Widmayer (Hrsg.), Herausforderungen eines globalen Informationsverbundes für die Informatik: GISI 95 (S. 322–329). Informatik aktuell. Berlin: Springer-Verlag

    Google Scholar 

  • Burow, R. & Weber, G. (1996). Example explanation in learning environments. In: C. Frasson, G. Gauthier & A. Lesgold (eds.), Intelligent Tutoring Systems. Proceedings of the Third International Conference, ITS, 96 (pp. 457–465). Lecture Notes in Computer Science, Vol. 1086. Berlin: Springer

    Chapter  Google Scholar 

  • Carr, B. & Goldstein, I. (1977). Overlays: A theory of modelling for computer aided instruction (AI Memo 406). Cambridge, MA: Massachusetts Institute of Technology, AI Laboratory

    Google Scholar 

  • Faries, J.M.& Reiser, B. J. (1988). Access and use of previous solutions in a problem solving situation. Proceedings of the Tenth Annual Conference of the Cognitive Science Society (pp. 433–439). Hillsdale, NJ: Lawrence Erlbaum

    Google Scholar 

  • Gentner, D. (1989). Finding the needle: Accessing and reasoning from prior cases. In: K.J. Hammond (ed.), Proceedings of the Second Workshop on Case-Based Reasoning (pp. 137–143). San Mateo, CA: Morgan Kaufmann

    Google Scholar 

  • Issroff, K. & Del Soldato, T. (1996). Incorporating Motivation into Computer-supported Coolaborative Learning. In P. Brna, A. Paiva & J. Self (eds.), Proceedings of the European Conference on Artificial Intelligence in Education (pp. 284–290). Lisbon: Colibri

    Google Scholar 

  • Kobsa, A. (1993). User modeling: Recent work, prospects and hazards. In: M. Schneider-Hufschmidt, T. Kühme & U. Malinowski (eds.), Adaptive user interfaces: Principles and practice (pp. 111–128). Amsterdam: North-Holland

    Google Scholar 

  • Kolodner, J.L. (1993). Case-based reasoning. San Mateo, CA: Morgan Kaufmann

    Book  Google Scholar 

  • Mitchell, T. M., Keller, R.M. & Kedar-Cabelli, S.T. (1986). Explanation- based generalization: a unifying view. Machine Learning 1, 47–80

    Google Scholar 

  • Murray, W.R. (1988). Automatic program debugging for intelligent tutoring systems. London: Pitman

    MATH  Google Scholar 

  • Newman, D. (1989). Is a student model necessary? Apprenticeship as a model for ITS. In: D. Bierman, J. Breuker & J. Sandberg (eds.), Artificial intelligence and education (pp. 177–184). Amsterdam: IOS

    Google Scholar 

  • Rich, E. (1989). Stereotypes and User Modeling. In: A. Kobsa & W. Wahlster (eds.), User Modeling in Dialog Systems (pp. 35–51). Berlin: Springer

    Chapter  Google Scholar 

  • Schank, R.C. (1982). Dynamic memory. Cambridge, MA: Cambridge University Press

    Google Scholar 

  • Self, J.A. (1990). Bypassing the intractable problem of student modelling. In: C. Frasson & G. Gauthier (eds.), Intelligent Tutoring Systems: At the crossroads of artificial intelligence and education (pp. 107–123). Norwood: Ablex

    Google Scholar 

  • Selker, T. (1994). Coach: A teaching agent that learns. Communications of the ACM 37, 92–99

    Article  Google Scholar 

  • Sutcliffe, G. & Old, A.C. (1987). Do users know they have user models? In: H.-J. Bullinger & B. Shakel (eds.), Some experiences in the practice of user modeling INTERACTÁ87 (pp. 35–41). Amsterdam: North-Holland

    Google Scholar 

  • Swartout, B. (1985). Explanation and the role of the user model: How much will it help? In: Proceedings of the Ninth International Joint Conference on Artificial Intelligence, Los Angeles, CA (pp. 1299). Los Altos: Morgan Kaufmann

    Google Scholar 

  • Veloso, M. & Carbonell, J. (1993). Derivational analogy in PRODIGY: Automating case acquisition, storage, and utilization. Machine Learning 10, 249—278

  • Veloso, M.M. (1994). Prodigy/Analogy: Analogical reasoning in general problem solving. In: S. Wess, K.-D. Althoff & M.M. Richter (eds.), Topics in case-based reasoning (pp. 33–50). Berlin: Springer

    Chapter  Google Scholar 

  • Weber, G. (1994). Fallbasiertes Lernen und Analogien: Unterstützung von Problemlöse- und Lernprozessen in einem adaptiven Lernsystem. Weinheim: Psychologie Verlags Union

    Google Scholar 

  • Weber, G. (1996a). Episodic learner modeling. Cognitive Science 20, 195–236

    Article  Google Scholar 

  • Weber, G. (1996b). Individual selection of examples in an intelligent programming environment. Journal of Artificial Intelligence in Education 7, 3–31

    Google Scholar 

  • Weber, G., Bögelsack, A. & Wender, K.F. (1993). When can individual student models be useful? In: G. Strube & K.F. Wender (eds.), The cognitive psychology of knowledge. The German Wissenspsychologie project (pp. 263–284). Amsterdam: Elsevier (North-Holland)

    Chapter  Google Scholar 

  • Weber, G. & Möllenberg, A. (1995). ELM programming environment: A tutoring system for LISP beginners. In: K.F. Wender, F. Schmalhofer & H.-D. Böcker (eds.), Cognition and computer programming (pp. 373–408). Norwood, NJ: Ablex

    Google Scholar 

  • Weber, G. & Specht, M. (1997). User modeling and adaptive navigation support in WWW-based tutoring systems. In: A. Jameson, C. Paris & C. Tasso (eds.), User Modeling: Proceedings of the Sixth International Conference, UM97 (pp. 289–300). Wien: Springer

    Chapter  Google Scholar 

  • Wertz, H. (1982). Stereotyped program debugging: an aid for novice programmers. International Journal of Man-Machine Studies 16, 379–392.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Diese Arbeit wurde gefördert durch ein Projekt der „Stiftung Rheinland-Pfalz für Innovation“ für den zweiten Autor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Specht, M., Weber, G. Kognitive Lernermodellierung. Kognit. Wiss. 6, 165–176 (1997). https://doi.org/10.1007/BF03354919

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03354919

Navigation

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy