Abstract
Let S be a set of n points in the plane. We study the following problem: Partition S by a line into two subsets S a and S b such that max {f(S a), f(S b)} is minimal, where f is any monotone function defined over 2S. We first present a solution to the case where the points in S are the vertices of some convex polygon and apply it to some common cases — f(S′) is the perimeter, area, or width of the convex hull of S′ ⊆ S — to obtain linear solutions (or O(n log n) solutions if the convex hull of S is not given) to the corresponding problems. This solution is based on an efficient procedure for finding a minimal entry in matrices of some special type, which we believe is of independent interest. For the general case we present a linear space solution which is in some sense output sensitive. It yields solutions to the perimeter and area cases that are never slower and often faster than the best previous solutions.
Part of this work was done while the first author was visiting INRIA Sophia-Antipolis.
Preview
Unable to display preview. Download preview PDF.
References
Pankaj K. Agarwal and M. Sharir. Planar geometric location problems. Algorithmica, 11:185–195, 1994.
Te. Asano, B. Bhattacharya, J. M. Keil, and F. Yao. Clustering algorithms based on minimum and maximum spanning trees. In Proc. 4th Annu. ACM Sympos. Comput. Geom., pages 252–257, 1988.
D. Avis. Diameter partitioning. Discrete Comput. Geom., 1:265–276, 1986.
K. L. Clarkson, K. Mehlhorn, and R. Seidel. Four results on randomized incremental constructions. Comput. Geom. Theory Appl., 3(4):185–212, 1993.
O. Devillers and M. Katz. Optimal line bipartitions of point sets. Research Report 2871, INRIA, BP93, 06902 Sophia-Antipolis, France, 1996. http://www.inria.fr/rapports/sophia/rr-2871.html.
A. Glozman, K. Kedem, and G. Shpitalnik. Finding optimal bipartitions of points, 1994. manuscript.
Alex Glozman, Klara Kedem, and Gregory Shpitalnik. On some geometric selection and optimization problems via sorted matrices. In Proc. 4th Workshop Algorithms Data Struct., volume 955 of Lecture Notes in Computer Science, pages 26–37. Springer-Verlag, 1995.
J. Hagauer and G. Rote. Three-clustering of points in the plane. In T. Lengauer, editor, Proc. 1st Annu. European Sympos. Algorithms (ESA '93), volume 726 of Lecture Notes in Computer Science, pages 192–199. Springer-Verlag, 1993.
J. Hershberger and S. Suri. Finding tailored partitions. J. Algorithms, 12:431–463, 1991.
F. Hurtado, M. Noy, and S. Whitesides. Finding optimal k-partitions for points in convex position. Technical Report MA2-IR-95-0010, Departament de Matemàtica Aplicada II, Universitat Politècnica de Catalunya, Barcelona, Spain, 1995.
J. W. Jaromczyk and M. Kowaluk. An efficient algorithm for the Euclidean two-center problem. In Proc. 10th Annu. ACM Sympos. Comput. Geom., pages 303–311, 1994.
M. J. Katz. Improved algorithms in geometric optimization via expanders. In Proc. 3rd Israel Symposium on Theory of Computing and Systems, pages 78–87, 1995.
M. J. Katz and M. Sharir. An expander-based approach to geometric optimization. In Proc. 9th Annu. ACM Sympos. Comput. Geom., pages 198–207, 1993.
J. S. B. Mitchell and E. L. Wynters. Finding optimal bipartitions of points and polygons. In Proc. 2nd Workshop Algorithms Data Struct., volume 519 of Lecture Notes in Computer Science, pages 202–213. Springer-Verlag, 1991.
C. Monma and S. Suri. Partitioning points and graphs to minimize the maximum or the sum of diameters. In Graph Theory, Combinatorics and Applications (Proc. 6th Internat. Conf. Theory Appl. Graphs), volume 2, pages 899–912, New York, NY, 1991. Wiley.
M. H. Overmars and J. van Leeuwen. Maintenance of configurations in the plane. J. Comput. Syst. Sci., 23:166–204, 1981.
F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer-Verlag, New York, NY, 1985.
J. Rokne, S. Wang, and X. Wu. Optimal bipartitions of point sets. In Proc. 4th Canad. Conf. Comput. Geom., pages 11–16, 1992.
Micha Sharir. A near-linear algorithm for the planar 2-center problem. In Proc. 12th Annu. ACM Sympos. Comput. Geom., pages 106–112, 1996.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1996 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Devillers, O., Katz, M.J. (1996). Optimal line bipartitions of point sets. In: Asano, T., Igarashi, Y., Nagamochi, H., Miyano, S., Suri, S. (eds) Algorithms and Computation. ISAAC 1996. Lecture Notes in Computer Science, vol 1178. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0009480
Download citation
DOI: https://doi.org/10.1007/BFb0009480
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-62048-8
Online ISBN: 978-3-540-49633-5
eBook Packages: Springer Book Archive