Abstract
Inductive inference is the theory of identifying recursive functions from examples. In [26], [27], [30] the following thesis was stated: Any class of recursive functions which is identifiable at all can always be identified by an enumeratively working strategy. Moreover, the identification can always be realized with respect to a suitable nonstandard (i.e. non-Gödel) numbering. We review some of the results which have led us to state this thesis. New results are presented concerning monotonic identification and corroborating the thesis. Some of the consequences of the thesis are discussed involving the development of the theory of inductive inference during the last decade. Problems of further investigation as well as further applications of non-Gödel numberings in inductive inference are summarized.
Preview
Unable to display preview. Download preview PDF.
References
Angluin, D., Inductive inference of formal languages from positive data. Information and Control 45(1980) 117–135.
Angluin, D., Smith, C.H., Inductive inference: theory and methods. Computing surveys 15(1983) 237–269.
Barzdin, J.M., Complexity and frequency solution of some algorithmically unsolvable problems. Doctoral dissertation, Novosibirsk State University, 1971 (in Russian).
Beick, H.-R., Induktive Inferenz mit höchster Konvergenzgeschwindigkeit. Dissertation A, Humboldt-Universität Berlin, 1984.
Blum, L., Blum, M., Toward a mathematical theory of inductive inference. Information and Control 28(1975) 125–155.
Blumer, A., Ehrenfeucht, A., Haussler, D., Warmuth, M., Occam's razor. Information Processing Letters 24(1987) 377–380.
Board, R., Pitt, L., On the necessity of Occam algorithms. University of Illinois, 'Techn. Report UIUCDCS-R-89-1544, 1989.
Case, J., Smith, C., Comparison of identification criteria for machine inductive inference. Theoretical Computer Science 25(1983) 193–220.
Freivalds, R., On the limit synthesis of numbers of general recursive functions in various computable numberings. Sov. Math. Dokl. 15(1974) 1681–1683.
Freivalds, R., Kinber, E.B., Wiehagen, R., Inductive inference and computable one-one numberings. Zeitschrift für Math. Logik und Grundlagen der Mathematik 28(1982) 463–479.
Freivalds, R., Kinber, E.B., Wiehagen, R., Connections between identifying functionals, standardizing operations, and computable numberings. Zeitschrift für Math. Logik und Grundlagen der Mathematik 30(1984) 145–164.
Freivalds, R., Kinber, E.B., Wiehagen, R., Probabilistic versus deterministic inductive inference in nonstandard numberings. Zeitschrift für Math. Logik und Grundlagen der Mathematik 34(1988) 531–539.
Freivalds, R., Kinber, E.B., Wiehagen, R., Inductive inference from good examples. Lecture Notes in Artificial Intelligence 397(1989) 1–17.
Gold, E.M., Language, identification in the limit. Information and Control 10(1967) 447–474.
Jain, S., Sharma, A., Recursion theoretic characterizations of language learning. University of Rochester, Department of Computer Science, Techn. Report 281, 1989.
Jantke, K.P., Monotonic and non-monotonic inductive inference. New Generation Computing 8(1991) 349–360.
Jantke, K.P., Beick, H.-R., Combining postulates of naturalness in inductive inference. Elektronische Informationsverarbeitung und Kybernetik 17(1981) 465–484.
Klette, R., Wiehagen, R., Research in the theory of inductive inference by GDR mathematicians — a survey. Information Sciences 22(1980) 149–169.
Kurtz, S.A., Smith, C.H., On the role of search for learning. Proc. Workshop on Computational Learning Theory (R. Rivest, D. Haussler, M. Warmuth, Eds.), 1989, 303–311.
Podnieks, K.M., Comparing various concepts of function prediction, Part I in: [24], Vol. 1, 68–81; Part II in [24], Vol. 2, 33–44 (in Russian).
Rogers, H. Jr., Theory of recursive functions and effective computability. McGraw-Hill, New York, 1967.
Royer, J.S., A connotational theory of program structure. Lecture Notes in Computer Science 273(1987), 186 pp.
Strukturerkennung diskreter kybernetischer Systeme I, II. (R. Lindner, H. Thiele, Eds.), Seminarberichte der Sekt. Mathematik der Humboldt-Universität Berlin 82(1986), 452 S.
Theory of algorithms and programs. Vol. 1, 2, 3 (J.M. Barzdin, Ed.), Latvian State University Riga, 1974, 1975, 1977 (in Russian).
Wiehagen, R., Identification of formal languages. Lecture Notes in Computer Science 53(1977) 571–579.
Wiehagen, R., Zur Theorie der algorithmischen Erkennung. Dissertation B, Humboldt-Universität Berlin, 1978.
Wiehagen, R., Characterization problems in the theory of inductive inference. Lecture Notes in Computer Science 62(1978) 494–508.
Wiehagen, R., How fast is program synthesis from examples. Lecture Notes in Computer Science 215(1986) 231–239.
Wiehagen, R., On the complexity of program synthesis from examples, Journal of Information Processing and Cybernetics 22(1986) 305–323.
Wiehagen, R., Jung, H., Rekursionstheoretische Charakterisierung von erkennbaren Klassen rekursiver Funktionen. Elektronische Informationsverarbeitung und Kybernetik (EIK) 13(1977) 385–397.
Wiehagen, R., Liepe, W., Charakteristische Eigenschaften von erkennbaren Klassen rekursiver Funktionen. Elektronische Informationsverarbeitung und Kybernetik 12(1976) 421–438.
Zeugmann, T., A posteriori characterizations in inductive inference of recursive functions. Journal of Information Processing and Cybernetics 19(1983) 559–594.
Zeugmann, T., On the synthesis of fastest programs in inductive inference. Journal of Information Processing and Cybernetics 19(1983) 627–642.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1991 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wiehagen, R. (1991). A thesis in inductive inference. In: Dix, J., Jantke, K.P., Schmitt, P.H. (eds) Nonmonotonic and Inductive Logic. NIL 1990. Lecture Notes in Computer Science, vol 543. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0023324
Download citation
DOI: https://doi.org/10.1007/BFb0023324
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-54564-4
Online ISBN: 978-3-540-38469-4
eBook Packages: Springer Book Archive