Skip to main content
Log in

An Algorithmic Characterization of Polynomial Functions over \({\mathbb{Z}}_{p^{n}} \)

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

In this paper we consider polynomial representability of functions defined over \({\mathbb{Z}}_{p^{n}}\), where p is a prime and n is a positive integer. Our aim is to provide an algorithmic characterization that (i) answers the decision problem: to determine whether a given function over \({\mathbb{Z}}_{p^{n}}\) is polynomially representable or not, and (ii) finds the polynomial if it is polynomially representable. The previous characterizations given by Kempner (Trans. Am. Math. Soc. 22(2):240–266, 1921) and Carlitz (Acta Arith. 9(1), 67–78, 1964) are existential in nature and only lead to an exhaustive search method, i.e. algorithm with complexity exponential in size of the input. Our characterization leads to an algorithm whose running time is linear in size of input. We also extend our result to the multivariate case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1

Similar content being viewed by others

References

  1. Brawley, J., Mullen, G.: Functions and polynomials over Galois rings. J. Number Theory 41(2), 156–166 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  2. Carlitz, L.: Functions and polynomials (\(\operatorname{mod}\ p^{n} \)). Acta Arith. 9(1), 67–78 (1964)

    MathSciNet  Google Scholar 

  3. Carlitz, L.: Functions and correspondences in a finite field. Bull. Am. Math. Soc. 83(2), 139–165 (1977)

    Article  MATH  Google Scholar 

  4. Dickson, L.: The analytic representation of substitutions on a power of a prime number of letters with a discussion of the linear group. Ann. Math. 11(1/6), 65–120 (1896)

    Article  MATH  Google Scholar 

  5. Hermite, C.: Sur les fonctions de sept lettres. C. R. Math. Acad. Sci. Paris 57, 750–757 (1863)

    Google Scholar 

  6. Kaiser, H., Nöbauer, W.: Permutation polynomials in several variables over residue class rings. J. Aust. Math. Soc. 43(2), 171–175 (1987)

    Article  MATH  Google Scholar 

  7. Keller, G., Olson, F.: Counting polynomial functions \(\operatorname{mod}\ p^{n}\). Duke Math. J. 35(4), 835–838 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  8. Kempner, A.J.: Polynomials and their residue systems. Trans. Am. Math. Soc. 22(2), 240–266 (1921)

    Article  MathSciNet  Google Scholar 

  9. Lausch, H., Nöbauer, W.: Algebra of Polynomials vol. 5. North-Holland, Amsterdam (1973)

    Book  MATH  Google Scholar 

  10. Lidl, R., Niederreiter, H., Cohn, P.: Finite Fields vol. 20. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  11. Mullen, G., Stevens, H.: Polynomial functions (\(\operatorname{mod}\ m\)). Acta Math. Hung. 44(3), 237–241 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  12. Zhang, Q.: Polynomial functions and permutation polynomials over some finite commutative rings. J. Number Theory 105(1), 192–202 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ambedkar Dukkipati.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guha, A., Dukkipati, A. An Algorithmic Characterization of Polynomial Functions over \({\mathbb{Z}}_{p^{n}} \) . Algorithmica 71, 201–218 (2015). https://doi.org/10.1007/s00453-013-9799-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-013-9799-7

Keywords

Navigation

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy