Abstract
The accurate classification of Motor Imagery (MI) electroencephalography (EEG) signals is crucial for advancing Brain-Computer Interface (BCI) technologies, particularly for individuals with disabilities. In this study, we present a sophisticated deep learning methodology that systematically evaluates three models CNN, RNN, and BiLSTM, to identify the optimal approach for MI signal classification. Leveraging the BCI Competition IV 2a dataset, we applied a pre-processing step removing three EOG channels and retaining 22 EEG channels, extracting 288 MI epochs, each lasting 3 s. Our findings highlight the superior performance of the proposed RNN model, achieving a remarkable maximum accuracy of 98%. This outcome signifies a significant advancement in MI signal classification, demonstrating the potential of deep learning techniques to enhance BCI precision. The study contributes by introducing a novel methodology and showcasing its efficacy through rigorous evaluation against benchmarks, providing valuable insights for the development of more robust and accurate BCI systems.








Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data Availability
The dataset used in this study is public and can be found at the following links: https://www.bbci.de/competition/iv/.
References
Bekaert M, Botte-Lecocq C, Cabestaing F, Rakotomamonjy A. Les interfaces Cerveau-Machine pour la palliation du handicap moteur sévère. Sci et Technol pour le Handicap, Lavoisier. 2009;3(1):95–121. https://doi.org/10.3166/sth.3.95-121.hal-00521052.
Rivet B, Souloumiac A, Extraction de potentiels évoqués P300 pour les interfaces cerveau-machine. Colloque GRETSI, 11–14 Sept (2007), Troyes.
Wang L, Huang W, Yang Z, Zhang C. Temporal-spatial-frequency depth extraction of brain computer interface based on mental tasks. Biomed Signal Process Control. 2020;58: 101845.
Fadel W, Kollod C, Wahdow M, Ibrahim Y, Ulbert I, Multi-Class Classification of Motor Imagery EEG Signals Using Image-Based Deep Recurrent Convolutional Neural Network. Conference Paper (2020) https://doi.org/10.1109/BCI48061.2020.9061622.
Nicolas-Alonso LF, Gomez-Gil J. Brain computer interfaces, a review. Sensors. 2012;12:1211–79. https://doi.org/10.3390/s120201211.
Uyulan C, Development of LSTM & CNN based hybrid deep learning model to classify motor imagery tasks (2020)
Akrout A, Echtioui A, Khemakhem R, Ghorbel M, "Artificial and Convolutional Neural Network of EEG-Based Motor imagery classification: A Comparative Study," 2020 20th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), Monastir, Tunisia, (2020) 46–50. https://doi.org/10.1109/STA50679.2020.9329317.
Wang Z, Cao L, Zhang Z, Gong X, Sun Y, Wang H. Short time Fourier transformation and deep neural networks for motor imagery brain computer interface recognition. Concurr Comput Pract Exp. 2018;30:e4413. https://doi.org/10.1002/cpe.4413.
Libessart E, Interface cerveau-machine : de nouvelles perspectives grâce à l’accélération matérielle. Electronique. Ecole nationale supérieure Mines-Télécom Atlantique, (2018). Français. NNT : 2018IMTA0105. tel-02017104.
Bioulac B, Jarry B, Ardaillou R, Ardaillou. Interfaces cerveau-machine : essais d‘applications médicales, technologie et questions éthiques.
Li F, He F, Wang F, Zhang D, Xia Y, Li X. A novel simplified convolutional neural network classification algorithm of motor imagery eeg signals based on deep learning. Appl Sci. 2020;10:1605. https://doi.org/10.3390/app10051605.
Tang Z, Li C, Sun S. Single-trial EEG classification of motor imagery using deep convolutional neural networks. 0030–4026/© 2016 Elsevier GmbH All rights reserved. Optik. 2017;130:11–8.
Dose H, Møller JS, Puthusserypady S, Iversen H, A Deep Learning MI-EEG Classication Model for BCIs. In Proceedings of 2018 26th European Signal Processing Conference (2018) (pp. 1690–93). IEEE. https://doi.org/10.23919/EUSIPCO.2018.8553332.
Roy S, Chowdhury A, McCreadie K, Prasad G. Deep learning based inter-subject continuous decoding of motor imagery for practical brain-computer interfaces. Fronti Neurosci. 2020;14:918.
Lun X, Yu Z, Chen T, F. Wang et Y. Hou. A simplified CNN classification method for MI-EEG via the electrode pairs signals. Front Hum Neurosci. 2020;14:338. https://doi.org/10.3389/fnhum.2020.00338.
Garcia-Moreno FM, Bermudez-Edo M, Rodríguez-Fórtiz MJ, Garrido JL, A CNN-LSTM deep learning classifier for motor imagery eeg detection using a low-invasive and low-cost BCI Headband. Authorized licensed use limited to: UNIVERSITE DE SFAX. Downloaded on January 28, 2021 at 19:31:27 UTC from IEEE Xplore. 978–1–7281–6158–7/20/$31.00 ©2020 IEEE.
Brunner C, Leeb R, Müller-Putz GR, Schlögl A, Pfurtscheller G, Competition BCI. – Graz data set A. Inst Knowl Discov (Laboratory of Brain-Computer Interfaces). Graz Univ Technol. 2008;16:1–6.
Echtioui A, Zouch W, Ghorbel M, Mhiri C, Hamam H, Multi-class motor imagery EEG classification using convolution neural network. In Proceedings of the 13th International Conference on Agents and Artificial Intelligence (ICAART 2021) – 1: 591–595 ISBN: 978–989–758–484–8 Copyrightc 2021 by SCITEPRESS – Science and Technology Publications, Lda. https://doi.org/10.5220/0010425905910595
Echtioui A, Zouch W, Ghorbel M, Mhiri C, Hamam H, Fusion convolutional neural network for multi-class motor imagery of EEG signals classification. 978–1–7281–8616–0/21/$31.00 ©2021 IEEE.
Ang KK, Chin ZY, Wang C, Guan C, Zhang H. Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b. Front Neurosci. 2012;6:39.
Schirrmeister RT, Springenberg JT, Fiederer LDJ, Glasstetter M, Eggensperger K, Tangermann M, Hutter F, Burgard W, Ball T. Deep learning with convolutional neural networks for EEG decoding and visualization. Hum Brain Mapp. 2017;38:5391–420.
Ingolfsson TM, Hersche M, Wang X, Kobayashi N, Cavigelli L, Benini L, EEG-TCNet: An accurate temporal convolutional network for embedded motor-imagery brain–machine interfaces. In Proceedings of the 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Toronto, ON, Canada, 11–14 October (2020) pp. 2958–2965.
Riyad M, Khalil M, Adib A. Incep-EEGNet: A ConvNet for Motor Imagery Decoding. In: El Moataz A, Mammass D, Mansouri A, Nouboud F, editors. Image and Signal Processing: 9th International Conference, ICISP 2020, Marrakesh, Morocco, June 4–6, 2020, Proceedings. Cham: Springer International Publishing; 2020. p. 103–11.
Funding
The authors received no financial support for the research, authorship, and/or publication of this article.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interest
Authors declare no conflicts of interests.
Ethics Approval and Consent to Participate
Not applicable.
Consent for Publication
Not applicable.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
About this article
Cite this article
Khemakhem, R., Belgacem, S., Echtioui, A. et al. Multi-class Classification of Motor Imagery EEG Signals Using Deep Learning Models. SN COMPUT. SCI. 5, 444 (2024). https://doi.org/10.1007/s42979-024-02845-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s42979-024-02845-x