Abstract
We study definable types in the theory of closed ordered differential fields (CODF). We show a condition for a type to be definable, then we prove that definable types are dense in the Stone space of CODF.
Similar content being viewed by others
References
Brouette, Q.: Differential algebra, ordered fields and model theory. Ph.D. Thesis, Mons (2015)
Delon, F.: Définissabilité avec paramètres extérieurs dans \(\mathbb{Q}_p\) et \(\mathbb{R}\). Proc. Am. Math. Soc. 106(1), 193–198 (1989)
van den Dries, L.: Tarski’s problem and Pfaffian functions. In: Logic Colloquium ’84 (Manchester, 1984), Studies in Logic and the Foundations of Mathematics, vol. 120, pp. 59–90. North-Holland, Amsterdam (1986)
Marker, D.: Model theory of differential fields. In: Marker, D., Messmer, M., Pillay, A. (eds.) Model Theory of Fields, Lecture Notes in Logic, ASL, 2nd edn. (2006)
Marker, D., Steinhorn, C.: Definable types in O-minimal theories. J. Symb. Logic 59(1), 185–198 (1994)
Pillay, A.: Definability of types, and pairs of O-minimal structures. J. Symb. Logic 59(4), 1400–1409 (1994)
Point, F.: Ensembles définissables dans les corps ordonnés différentiellement clos. C. R. Math. Acad. Sci. Paris 349(17–18), 929–933 (2011)
Singer, M.: The model theory of ordered differential fields. J. Symb. Logic 43(1), 82–91 (1978)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Brouette, Q. Definable types in the theory of closed ordered differential fields. Arch. Math. Logic 56, 119–129 (2017). https://doi.org/10.1007/s00153-016-0517-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00153-016-0517-4