Abstract
We present two applications of forcing with finite sequences of models as side conditions, adding objects of size \(\omega _2\). The first involves adding a \(\Box _{\omega _1}\) sequence and variants of such sequences. The second involves adding partial weak specializing functions for trees of height \(\omega _2\).
Similar content being viewed by others
References
Asperó, D., Mota, M.A.: A generalization of Martin’s axiom. Isr. J. Math. 210, 193–231 (2015). doi:10.1007/s11856-015-1250-0
Asperó, D., Mota, M.A.: Forcing consequences of \(PFA\) together with the continuum large. Trans. Am. Math. Soc. 367(9), 6103–6129 (2015)
Baumgartner, J.E.: Applications of the proper forcing axiom. In: Kunen, K., Vaughan, J. (eds.) Handbook of Set-Theoretic Topology, pp. 913–959. North-Holland, Amsterdam (1984)
Baumgartner, J.E., Shelah, S.: Remarks on superatomic Boolean algebras. Ann. Pure Appl. Logic 33(2), 109–129 (1987)
Cummings, J.: Souslin trees which are hard to specialise. Proc. Am. Math. Soc. 125(8), 2435–2441 (1997)
Dolinar, G., Džamonja, M.: Forcing \(\square _{\omega _1}\) with finite conditions. Ann. Pure Appl. Logic 164(1), 49–64 (2013)
Friedman, S.-D.: Forcing with finite conditions. In: Set Theory, Trends Mathematics, pp. 285–295. Birkhäuser, Basel (2006)
Friedman, S.-D.: BPFA and inner models. Ann. Jpn. Assoc. Philos. Sci. 19, 29–36 (2011)
Friedman, S.-D., Krueger, J.: Thin stationary sets and disjoint club sequences. Trans. Am. Math. Soc. 359(5), 2407–2420 (2007)
Koszmider, P.: On strong chains of uncountable functions. Isr. J. Math. 118, 289–315 (2000)
Krueger, J.: Coherent adequate sets and forcing square. Fund. Math. 224(3), 279–300 (2014)
Krueger, J., Mota, M.A.: Coherent adequate forcing and preserving CH. J. Math. Logic 15(2), 1550005 (2015). doi:10.1142/S0219061315500051
Mitchell, W.J.: Adding closed unbounded subsets of \(\omega _2\) with finite forcing. Notre Dame J. Formal Logic 46(3), 357–371 (2005)
Mitchell, W.J.: \(I[\omega _2]\) can be the nonstationary ideal on \({\rm Cof}(\omega _1)\). Trans. Am. Math. Soc. 361(2), 561–601 (2009)
Neeman, I.: Higher analogues of the proper forcing axiom (in preparation)
Neeman, I.: Forcing with sequences of models of two types. Notre Dame J. Form. Log. 55(2), 265–298 (2014)
Rubin, M., Shelah, S.: Combinatorial problems on trees: partitions, \(\Delta \)-systems and large free subtrees. Ann. Pure Appl. Logic 33(1), 43–81 (1987)
Sakai, H.: Chang’s conjecture and weak square. Arch. Math. Logic 52(1–2), 29–45 (2013)
Shelah, S.: Proper Forcing. Lecture Notes in Mathematics, vol. 940. Springer, Berlin (1982)
Shelah, S., Stanley, L.: Weakly compact cardinals and nonspecial Aronszajn trees. Proc. Am. Math. Soc. 104(3), 887–897 (1988)
Todorčević, S.: Stationary sets, trees and continuums. Publ. Inst. Math. (Beograd) (N.S.) 29(43), 249–262 (1981)
Stevo, T.: A note on the proper forcing axiom. In: Axiomatic set theory (Boulder, CO, 1983), volume 31 of Contemporary Mathematics, pp. 209–218. American Mathematical Society, Providence, RI (1984)
Todorčević, S.: Directed sets and cofinal types. Trans. Am. Math. Soc. 290(2), 711–723 (1985)
Todorčević, S.: Partition relations for partially ordered sets. Acta Math. 155(1–2), 1–25 (1985)
Todorčević, S.: Special square sequences. Proc. Am. Math. Soc. 105(1), 199–205 (1989)
Stevo, T.: Conjectures of Rado and Chang and cardinal arithmetic. In: Finite and Infinite Combinatorics in Sets and Logic (Banff, AB, 1991), volume 411 of NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., pp. 385–398. Kluwer Academic Publications, Dordrecht (1993)
Velickovic, B., Venturi, G.: Proper forcing remastered. In: Cummings, J., Schimmerling, E. (eds.) Appalachian Set Theory: 2006–2012, London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge (2013)
Author information
Authors and Affiliations
Corresponding author
Additional information
This material is based upon work supported by the National Science Foundation under Grants No. DMS-1101204 and DMS-1363364, and the Simons Foundation under Simons Fellowship No. 225854.
The material from Definition 3.26 to the end of Section 3 was added in revision in July 2015.
Rights and permissions
About this article
Cite this article
Neeman, I. Two applications of finite side conditions at \(\omega _2\) . Arch. Math. Logic 56, 983–1036 (2017). https://doi.org/10.1007/s00153-017-0550-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00153-017-0550-y