Abstract
In this paper we consider, in dimension d≥ 2, the standard \(\mathbb{P}_{1}\) finite elements approximation of the second order linear elliptic equation in divergence form with coefficients in L ∞(Ω) which generalizes Laplace’s equation. We assume that the family of triangulations is regular and that it satisfies an hypothesis close to the classical hypothesis which implies the discrete maximum principle. When the right-hand side belongs to L 1(Ω), we prove that the unique solution of the discrete problem converges in \(W^{1,q}_0(\Omega)\) (for every q with \({1 \leq q < \frac{d}{d-1}}\)) to the unique renormalized solution of the problem. We obtain a weaker result when the right-hand side is a bounded Radon measure. In the case where the dimension is d = 2 or d = 3 and where the coefficients are smooth, we give an error estimate in \(W^{1,q}_0(\Omega)\) when the right-hand side belongs to L r(Ω) for some r > 1.
Similar content being viewed by others
References
Aguilera N.E., Caffarelli L.A. (1986) Regularity results for discrete solutions of second order elliptic problems in the finite element method. Calcolo 23, 327–353
Bénilan P., Boccardo L., Gallouët T., Gariepy R., Pierre M., Vázquez J.L. (1995) An L 1-theory of existence and uniqueness of solutions of nonlinear elliptic equations. Ann. Scuola Norm. Sup. Pisa 22, 241–273
Bénilan P., Bouhsiss F. (1997) Une remarque sur l’unicité des solutions pour l’opérateur de Serrin. C. R. Acad. Sci. Paris Sér. I 325, 611–616
Boccardo L., Gallouët T. (1989) Nonlinear elliptic and parabolic equations involving measure data. J. Funct. Anal. 87, 149–169
Boccardo L., Gallouët T. (1992) Nonlinear elliptic equations with right-hand side measures. Comm. Partial Differ. Equ. 17, 641–655
Brenner S.C., Scott L.R. (1994) The mathematical theory of finite element methods Texts in Applied Mathematics, vol 15. Springer, Berlin Heidelberg New York
Casado-Dí az, J., Chacón Rebollo, T., Girault, V., Gómez Mármol, M., Murat, F.: A condition with ensures the discrete maximum principle for − div A(x) ∇ in dimension 2 (to appear)
Ciarlet P.G. (1978) The finite element method for elliptic problems. North-Holland, Amsterdam
Ciarlet P.G., Raviart P.A. (1973) Maximum principle and uniform convergence for the finite element method. Comput. Meth. Appl. Mech. Eng. 2, 17–31
Clain S. (1995) Finite element approximations for the Laplace operator with a right-hand side measure. Math. Models Methods Appl. Sci. 6, 713–719
Dal Maso G., Murat F., Orsina L., Prignet A. (1999) Renormalized solutions of elliptic equations with general measure data. Ann. Scuola Norm. Sup. Pisa 28, 741–808
Dall’Aglio A. (1996) Approximated solutions of equations with L 1 data. Application to the H-convergence of quasi-linear parabolic equations. Ann. Mat. Pura Appl. 170, 207–240
Drăgănescu A., Dupont T.F., Scott L.R. (2004) Failure of the discrete maximum principle for an elliptic finite element problem. Math. Comp. 74, 1–23
Droniou J., Gallouët T., Herbin R. (2003) A finite volume scheme for a noncoercive elliptic equation with measure data. SIAM J. Numer. Anal. 41, 1997–2031
Frey P., George P.-L. (1999) Maillages. Hermes, Paris
Gallouët T., Herbin R. (1999) Finite volume approximation of elliptic problems with irregular data. In: Vilsmeier R., Benkhaldoun F., Hänel D. (eds), Finite volumes for complex applications II. Hermes, Paris, pp. 155–162
Gallouët T., Herbin R. (2004) Convergence of linear finite elements for diffusion equations with measure data. C. R. Math. Acad. Sci. Paris Sér. I 338, 81–84
George P.-L., Borouchaki H. (1998) Delaunay triangulation and meshing. Application to finite elements. Hermes, Paris
Lions, P.-L., Murat, F.: Solutions renormalisées d’équations elliptic non linéaires. (to appear)
Meyers N.G. (1963) An L p estimate for the gradient of solutions of second order elliptic divergence equations. Ann. Scuola Norm. Sup. Pisa 17, 189–206
Murat, F.: Soluciones renormalizadas de edp elípticas no lineales. Publication 93023 du Laboratoire d’Analyse Numérique de l’Université Paris VI (1993), p 38
Murat, F.: Équations elliptiques non linéaires avec second membre L 1 ou mesure. In: Actes du 26ème Congrès national d’analyse numérique (Les Karellis, juin 1994), Université de Lyon I (1994), pp. A12–A24
Scott L.R. (1973) Finite element convergence for singular data. Numer. Math. 21, 317–327
Serrin J. (1964) Pathological solutions of elliptic differential equations. Ann. Scuola Norm. Sup. Pisa 18, 385–387
Stampacchia G. (1965) Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus. Ann. Inst. Fourier (Grenoble) 15, 189–258
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Casado-Díaz, J., Chacón Rebollo, T., Girault, V. et al. Finite elements approximation of second order linear elliptic equations in divergence form with right-hand side in L 1 . Numer. Math. 105, 337–374 (2007). https://doi.org/10.1007/s00211-006-0033-2
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-006-0033-2