Abstract
We deal with the numerical solution of a scalar nonstationary nonlinear convection–diffusion equation. We employ a combination of the discontinuous Galerkin finite element method for the space semi-discretization and the k-step backward difference formula for the time discretization. The diffusive and stabilization terms are treated implicitly whereas the nonlinear convective term is treated by a higher order explicit extrapolation method, which leads to the necessity to solve only a linear algebraic problem at each time step. We analyse this scheme and derive a priori asymptotic error estimates in the discrete L ∞(L 2)-norm and the L 2(H 1)-seminorm with respect to the mesh size h and time step τ for k = 2,3. Numerical examples verifying the theoretical results are presented.
Similar content being viewed by others
References
Arnold D.N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19(4), 742–760 (1982)
Arnold D.N., Brezzi F., Cockburn B., Marini L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2002)
Ascher U.M., Ruuth S.J., Wetton B.T.R.: Implicit–explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal. 32(3), 797–823 (1995)
Aubin J.P.: Behavior of the error of the approximate solutions of boundary value problems for linear elliptic operators by galerkin’s and finite difference methods. Ann. Scuola Norm. Sup. Pisa 21, 588–637 (1967)
Babuška I., Zlámal M.: Nonconforming elements in the finite element method with penalty. SIAM J. Numer. Anal. 10, 863–875 (1973)
Babuška I., Baumann C.E., Oden J.T.: A discontinuous hp finite element method for diffusion problems: 1-d analysis. Comput. Math. Appl. 37, 103–122 (1999)
Bassi F., Crivellini A., Rebay S., Savini M.: Discontinuous Galerkin solution of the Reynolds averaged Navier-Stokes and k-ω turbulence model equations. Comput. Fluids 34, 507–540 (2005)
Bassi F., Rebay S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. J. Comput. Phys. 131, 267–279 (1997)
Bassi, F., Rebay, S.: A high order discontinuous Galerkin method for compressible turbulent flow. In: Cockburn, B., Karniadakis, G.E., Shu, C.W. (eds.) Discontinuous Galerkin Method: Theory Computations and Applications, Lecture Notes in Computational Science and Engineering, vol. 11. Springer, Berline, pp. 113–123 (2000)
Baumann C.E., Oden J.T.: A discontinuous hp finite element method for the Euler and Navier–Stokes equations. Int. J. Numer. Methods Fluids 31(1), 79–95 (1999)
Ciarlet P.G.: The Finite Elements Method for Elliptic Problems. North-Holland, Amsterdam (1979)
Cockburn B.: Discontinuous Galerkin methods for convection dominated problems. In: Barth, T.J., Deconinck, H.(eds) High-Order Methods for Computational Physics, Lecture Notes in Computational Science and Engineering, vol. 9, pp. 69–224. Springer, Berlin (1999)
Cockburn B., Karniadakis G.E., Shu C.W., (eds): Discontinuous Galerkin Methods. Springer, Berlin(2000)
Crouzeix M.: Une méthode multipas implicit-explicit pour l’approximation des équations d’évolutions paraboliques. Numer. Math. 35, 27–276 (1980)
Dolejší V.: On the discontinuous Galerkin method for the numerical solution of the Navier–Stokes equations. Int. J. Numer. Methods Fluids 45, 1083–1106 (2004)
Dolejší V.: Higher order semi-implicit discontinuous Galerkin finite element schemes for nonlinear convection–diffusion problems. In: de Castro, A.B., Gómez, D., Quintela, P., Salgado, P.(eds) Numerical Mathematics and Advanced Applications, ENUMATH 2005, pp. 432–439. Springer, Berlin (2006)
Dolejší V., Feistauer M.: Error estimates of the discontinuous Galerkin method for nonlinear nonstationary convection–diffusion problems. Numer. Funct. Anal. Optim. 26(25–26), 2709–2733 (2005)
Dolejší V., Feistauer M., Hozman J.: Analysis of semi-implicit DGFEM for nonlinear convection–diffusion problems. Comput. Methods Appl. Mech. Eng. 196, 2813–2827 (2007)
Dolejší, V., Feistauer, M., Kučera, V., Sobotíková, V.: An optimal L ∞(L 2)-error estimate of the discontinuous Galerkin method for a nonlinear nonstationary convection–diffusion problem. IMA J. Numer. Anal. (published online doi:10.1093/imanum/drm023, 2007)
Dolejší V., Feistauer M., Schwab C.: A finite volume discontinuous Galerkin scheme for nonlinear convection–diffusion problems. Calcolo 39, 1–40 (2002)
Dolejší V., Feistauer M., Sobotíková V.: A discontinuous Galerkin method for nonlinear convection–diffusion problems. Comput. Methods Appl. Mech. Eng. 194, 2709–2733 (2005)
Dumbser M., Munz C.D.: Building blocks for arbitrary high-order discontinuous Galerkin methods. J. Sci. Comput. 27, 215–230 (2006)
Feistauer M., Felcman J., Straškraba I.: Mathematical and Computational Methods for Compressible Flow. Oxford University Press, Oxford (2003)
Feistauer M., Hájek J., Švadlenka K.: Space–time discontinuos Galerkin method for solving nonstationary convection–diffusion-reaction problems. Appl. Math. 52(3), 197–234 (2007)
Feistauer M., Švadlenka K.: Discontinuous Galerkin method of lines for solving nonstationary singularly perturbed linear problems. J. Numer. Math. 12, 97–118 (2004)
Frank J., Hundsdorfer W., Verwer J.G.: On the stability of implicit–explicit linear multistep methods. Appl. Numer. Math. 25(6), 193–205 (1997)
Gear C.W.: The automatic integration of ordinary differential equations. Commun. ACM 14(3), 176–179 (1971)
Gear C.W.: Numerical Initial Value Problems in Ordinary Differential Equations. Prentice-Hall, Inc., Englewood Cliffs, NJ (1971)
Grisvard P.: Singularities in Boundary Value Problems. Springer, Berlin (1992)
Hairer E., Norsett S.P., Wanner G.: Solving Ordinary Differential Equations I, Nonstiff Problems. No. 8 in Springer Series in Computational Mathematics. Springer, Berlin (2000)
Hairer E., Wanner G.: Solving Ordinary Differential Equations II, Stiff and Differential-Algebraic Problems. Springer, Berlin (2002)
Hartmann R., Houston P.: Adaptive discontinuous Galerkin finite element methods for nonlinear hyperbolic conservation laws. SIAM J. Sci. Comput. 24, 979–1004 (2002)
Hartmann R., Houston P.: Symmetric interior penalty DG methods for the compressible Navier–Stokes equations. I. Method formulation. Int. J. Numer. Anal. Model. 1, 1–20 (2006)
Hartmann R., Houston P.: Symmetric interior penalty DG methods for the compressible Navier–Stokes equations. II. Goal-oriented a posteriori error estimation. Int. J. Numer. Anal. Model. 3, 141–162 (2006)
Henrici P.: Discrete Variable Methods in Ordinary Differential Equations. Wiley, New York (1962)
Houston P., Schwab C., Süli E.: Discontinuous hp-finite element methods for advection–diffusion problems. SIAM J. Numer. Anal. 39(6), 2133–2163 (2002)
Hundsdorfer W.: Partially implicit BDF2 blends for convection-dominated flows. SIAM J. Numer. Anal. 38(6), 1763–1783 (2001)
Klaij C.M., van der Vegt J., der Ven H.V.: Pseudo-time stepping for space–time discontinuous Galerkin discretizations of the compressible Navier–Stokes equations. J. Comput. Phys. 219(2), 622–643 (2006)
Klaij C.M., van der Vegt J., der Ven H.V.: Space–time discontinuous Galerkin method for the compressible Navier–Stokes equations. J. Comput. Phys. 217(2), 589–611 (2006)
Kufner A., John O., Fučik S.: Function Spaces. Academia, Prague (1977)
Lions P.L.: Mathematical Topics in Fluid Mechanics. Oxford Science Publications, USA (1996)
Lomtev I., Quillen C.B., Karniadakis G.E.: Spectral/hp methods for viscous compressible flows on unstructured 2d meshes. J. Comput. Phys. 144(2), 325–357 (1998)
Nitsche J.A.: Ein kriterium fr die quasi-optimalität des ritzschen verfahrens. Numer. Math. 11, 346–346 (1968)
Oden J.T., Babuška I., Baumann C.E.: A discontinuous hp finite element method for diffusion problems. J. Comput. Phys. 146, 491–519 (1998)
Ostermann A., Thalhammer M., Kirlinger G.: Stability of linear multistep methods and applications to nonlinear parabolic problems. Appl. Numer. Math. 48, 389–3407 (2004)
Rektorys K.: The Method of Discretization in Time and Partial Differential Equations. Reidel, Dodrecht (1982)
Rivière B., Wheeler M.F.: A discontinuous Galerkin method applied to nonlinear parabolic equations. In: Cockburn, B., Karniadakis, G.E., Schu, C.W.(eds) Discontinuous Galerkin methods Theory, computation and applications., Lect. Notes Comput. Sci. Eng., vol. 11, pp. 231–244. Springer, Berlin (2000)
Rivière B., Wheeler M.F., Girault V.: Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. Comput. Geosci. 3(3-4), 337–360 (1999)
Sudirham J., van der Vegt J., van Damme R.: Space–time discontinuous Galerkin method for advection–diffusion problems on time-dependent domains. Appl. Numer. Math. 56(12), 1491–1518 (2006)
Varah J.M.: Stability restrictions on second order, three level finite difference scheme for parabolic equations. SIAM J. Numer. Anal. 17(2), 300–309 (1980)
van der Vegt J.J.W., van der Ven H.: Space–time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flows. I. General formulation. J. Comput. Phys. 182(2), 546–585 (2002)
van der Ven H., van der Vegt J.J.W.: Space–time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flows. II. Efficient flux quadrature. Comput. Methods Appl. Mech. Eng. 191, 4747–4780 (2002)
Author information
Authors and Affiliations
Corresponding author
Additional information
This work is a part of the research project MSM 0021620839 financed by the Ministry of Education of the Czech Republic and was partly supported by the Grant No. 316/2006/B-MAT/MFF of the Grant Agency of the Charles University Prague. The research of M. Vlasák was supported by the project LC06052 of the Ministry of Education of the Czech Republic (Jindřich Nečas Center for Mathematical Modelling).
Rights and permissions
About this article
Cite this article
Dolejší, V., Vlasák, M. Analysis of a BDF–DGFE scheme for nonlinear convection–diffusion problems. Numer. Math. 110, 405–447 (2008). https://doi.org/10.1007/s00211-008-0178-2
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-008-0178-2