Skip to main content
Log in

Analysis of a BDF–DGFE scheme for nonlinear convection–diffusion problems

  • Published:
Numerische Mathematik Aims and scope Submit manuscript

Abstract

We deal with the numerical solution of a scalar nonstationary nonlinear convection–diffusion equation. We employ a combination of the discontinuous Galerkin finite element method for the space semi-discretization and the k-step backward difference formula for the time discretization. The diffusive and stabilization terms are treated implicitly whereas the nonlinear convective term is treated by a higher order explicit extrapolation method, which leads to the necessity to solve only a linear algebraic problem at each time step. We analyse this scheme and derive a priori asymptotic error estimates in the discrete L (L 2)-norm and the L 2(H 1)-seminorm with respect to the mesh size h and time step τ for k = 2,3. Numerical examples verifying the theoretical results are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold D.N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19(4), 742–760 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arnold D.N., Brezzi F., Cockburn B., Marini L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ascher U.M., Ruuth S.J., Wetton B.T.R.: Implicit–explicit methods for time-dependent partial differential equations. SIAM J. Numer. Anal. 32(3), 797–823 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  4. Aubin J.P.: Behavior of the error of the approximate solutions of boundary value problems for linear elliptic operators by galerkin’s and finite difference methods. Ann. Scuola Norm. Sup. Pisa 21, 588–637 (1967)

    MathSciNet  Google Scholar 

  5. Babuška I., Zlámal M.: Nonconforming elements in the finite element method with penalty. SIAM J. Numer. Anal. 10, 863–875 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  6. Babuška I., Baumann C.E., Oden J.T.: A discontinuous hp finite element method for diffusion problems: 1-d analysis. Comput. Math. Appl. 37, 103–122 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bassi F., Crivellini A., Rebay S., Savini M.: Discontinuous Galerkin solution of the Reynolds averaged Navier-Stokes and k-ω turbulence model equations. Comput. Fluids 34, 507–540 (2005)

    Article  MATH  Google Scholar 

  8. Bassi F., Rebay S.: A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. J. Comput. Phys. 131, 267–279 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bassi, F., Rebay, S.: A high order discontinuous Galerkin method for compressible turbulent flow. In: Cockburn, B., Karniadakis, G.E., Shu, C.W. (eds.) Discontinuous Galerkin Method: Theory Computations and Applications, Lecture Notes in Computational Science and Engineering, vol. 11. Springer, Berline, pp. 113–123 (2000)

  10. Baumann C.E., Oden J.T.: A discontinuous hp finite element method for the Euler and Navier–Stokes equations. Int. J. Numer. Methods Fluids 31(1), 79–95 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ciarlet P.G.: The Finite Elements Method for Elliptic Problems. North-Holland, Amsterdam (1979)

    Google Scholar 

  12. Cockburn B.: Discontinuous Galerkin methods for convection dominated problems. In: Barth, T.J., Deconinck, H.(eds) High-Order Methods for Computational Physics, Lecture Notes in Computational Science and Engineering, vol. 9, pp. 69–224. Springer, Berlin (1999)

    Google Scholar 

  13. Cockburn B., Karniadakis G.E., Shu C.W., (eds): Discontinuous Galerkin Methods. Springer, Berlin(2000)

    MATH  Google Scholar 

  14. Crouzeix M.: Une méthode multipas implicit-explicit pour l’approximation des équations d’évolutions paraboliques. Numer. Math. 35, 27–276 (1980)

    Article  MathSciNet  Google Scholar 

  15. Dolejší V.: On the discontinuous Galerkin method for the numerical solution of the Navier–Stokes equations. Int. J. Numer. Methods Fluids 45, 1083–1106 (2004)

    Article  MATH  Google Scholar 

  16. Dolejší V.: Higher order semi-implicit discontinuous Galerkin finite element schemes for nonlinear convection–diffusion problems. In: de Castro, A.B., Gómez, D., Quintela, P., Salgado, P.(eds) Numerical Mathematics and Advanced Applications, ENUMATH 2005, pp. 432–439. Springer, Berlin (2006)

    Chapter  Google Scholar 

  17. Dolejší V., Feistauer M.: Error estimates of the discontinuous Galerkin method for nonlinear nonstationary convection–diffusion problems. Numer. Funct. Anal. Optim. 26(25–26), 2709–2733 (2005)

    Google Scholar 

  18. Dolejší V., Feistauer M., Hozman J.: Analysis of semi-implicit DGFEM for nonlinear convection–diffusion problems. Comput. Methods Appl. Mech. Eng. 196, 2813–2827 (2007)

    Article  MATH  Google Scholar 

  19. Dolejší, V., Feistauer, M., Kučera, V., Sobotíková, V.: An optimal L (L 2)-error estimate of the discontinuous Galerkin method for a nonlinear nonstationary convection–diffusion problem. IMA J. Numer. Anal. (published online doi:10.1093/imanum/drm023, 2007)

  20. Dolejší V., Feistauer M., Schwab C.: A finite volume discontinuous Galerkin scheme for nonlinear convection–diffusion problems. Calcolo 39, 1–40 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  21. Dolejší V., Feistauer M., Sobotíková V.: A discontinuous Galerkin method for nonlinear convection–diffusion problems. Comput. Methods Appl. Mech. Eng. 194, 2709–2733 (2005)

    Article  MATH  Google Scholar 

  22. Dumbser M., Munz C.D.: Building blocks for arbitrary high-order discontinuous Galerkin methods. J. Sci. Comput. 27, 215–230 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Feistauer M., Felcman J., Straškraba I.: Mathematical and Computational Methods for Compressible Flow. Oxford University Press, Oxford (2003)

    MATH  Google Scholar 

  24. Feistauer M., Hájek J., Švadlenka K.: Space–time discontinuos Galerkin method for solving nonstationary convection–diffusion-reaction problems. Appl. Math. 52(3), 197–234 (2007)

    Article  MathSciNet  Google Scholar 

  25. Feistauer M., Švadlenka K.: Discontinuous Galerkin method of lines for solving nonstationary singularly perturbed linear problems. J. Numer. Math. 12, 97–118 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  26. Frank J., Hundsdorfer W., Verwer J.G.: On the stability of implicit–explicit linear multistep methods. Appl. Numer. Math. 25(6), 193–205 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  27. Gear C.W.: The automatic integration of ordinary differential equations. Commun. ACM 14(3), 176–179 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  28. Gear C.W.: Numerical Initial Value Problems in Ordinary Differential Equations. Prentice-Hall, Inc., Englewood Cliffs, NJ (1971)

    MATH  Google Scholar 

  29. Grisvard P.: Singularities in Boundary Value Problems. Springer, Berlin (1992)

    MATH  Google Scholar 

  30. Hairer E., Norsett S.P., Wanner G.: Solving Ordinary Differential Equations I, Nonstiff Problems. No. 8 in Springer Series in Computational Mathematics. Springer, Berlin (2000)

    Google Scholar 

  31. Hairer E., Wanner G.: Solving Ordinary Differential Equations II, Stiff and Differential-Algebraic Problems. Springer, Berlin (2002)

    Google Scholar 

  32. Hartmann R., Houston P.: Adaptive discontinuous Galerkin finite element methods for nonlinear hyperbolic conservation laws. SIAM J. Sci. Comput. 24, 979–1004 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  33. Hartmann R., Houston P.: Symmetric interior penalty DG methods for the compressible Navier–Stokes equations. I. Method formulation. Int. J. Numer. Anal. Model. 1, 1–20 (2006)

    MathSciNet  Google Scholar 

  34. Hartmann R., Houston P.: Symmetric interior penalty DG methods for the compressible Navier–Stokes equations. II. Goal-oriented a posteriori error estimation. Int. J. Numer. Anal. Model. 3, 141–162 (2006)

    MATH  MathSciNet  Google Scholar 

  35. Henrici P.: Discrete Variable Methods in Ordinary Differential Equations. Wiley, New York (1962)

    MATH  Google Scholar 

  36. Houston P., Schwab C., Süli E.: Discontinuous hp-finite element methods for advection–diffusion problems. SIAM J. Numer. Anal. 39(6), 2133–2163 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  37. Hundsdorfer W.: Partially implicit BDF2 blends for convection-dominated flows. SIAM J. Numer. Anal. 38(6), 1763–1783 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  38. Klaij C.M., van der Vegt J., der Ven H.V.: Pseudo-time stepping for space–time discontinuous Galerkin discretizations of the compressible Navier–Stokes equations. J. Comput. Phys. 219(2), 622–643 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  39. Klaij C.M., van der Vegt J., der Ven H.V.: Space–time discontinuous Galerkin method for the compressible Navier–Stokes equations. J. Comput. Phys. 217(2), 589–611 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  40. Kufner A., John O., Fučik S.: Function Spaces. Academia, Prague (1977)

    MATH  Google Scholar 

  41. Lions P.L.: Mathematical Topics in Fluid Mechanics. Oxford Science Publications, USA (1996)

    MATH  Google Scholar 

  42. Lomtev I., Quillen C.B., Karniadakis G.E.: Spectral/hp methods for viscous compressible flows on unstructured 2d meshes. J. Comput. Phys. 144(2), 325–357 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  43. Nitsche J.A.: Ein kriterium fr die quasi-optimalität des ritzschen verfahrens. Numer. Math. 11, 346–346 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  44. Oden J.T., Babuška I., Baumann C.E.: A discontinuous hp finite element method for diffusion problems. J. Comput. Phys. 146, 491–519 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  45. Ostermann A., Thalhammer M., Kirlinger G.: Stability of linear multistep methods and applications to nonlinear parabolic problems. Appl. Numer. Math. 48, 389–3407 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  46. Rektorys K.: The Method of Discretization in Time and Partial Differential Equations. Reidel, Dodrecht (1982)

    MATH  Google Scholar 

  47. Rivière B., Wheeler M.F.: A discontinuous Galerkin method applied to nonlinear parabolic equations. In: Cockburn, B., Karniadakis, G.E., Schu, C.W.(eds) Discontinuous Galerkin methods Theory, computation and applications., Lect. Notes Comput. Sci. Eng., vol. 11, pp. 231–244. Springer, Berlin (2000)

    Google Scholar 

  48. Rivière B., Wheeler M.F., Girault V.: Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. Comput. Geosci. 3(3-4), 337–360 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  49. Sudirham J., van der Vegt J., van Damme R.: Space–time discontinuous Galerkin method for advection–diffusion problems on time-dependent domains. Appl. Numer. Math. 56(12), 1491–1518 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  50. Varah J.M.: Stability restrictions on second order, three level finite difference scheme for parabolic equations. SIAM J. Numer. Anal. 17(2), 300–309 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  51. van der Vegt J.J.W., van der Ven H.: Space–time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flows. I. General formulation. J. Comput. Phys. 182(2), 546–585 (2002)

    MATH  MathSciNet  Google Scholar 

  52. van der Ven H., van der Vegt J.J.W.: Space–time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flows. II. Efficient flux quadrature. Comput. Methods Appl. Mech. Eng. 191, 4747–4780 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vít Dolejší.

Additional information

This work is a part of the research project MSM 0021620839 financed by the Ministry of Education of the Czech Republic and was partly supported by the Grant No. 316/2006/B-MAT/MFF of the Grant Agency of the Charles University Prague. The research of M. Vlasák was supported by the project LC06052 of the Ministry of Education of the Czech Republic (Jindřich Nečas Center for Mathematical Modelling).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dolejší, V., Vlasák, M. Analysis of a BDF–DGFE scheme for nonlinear convection–diffusion problems. Numer. Math. 110, 405–447 (2008). https://doi.org/10.1007/s00211-008-0178-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00211-008-0178-2

Mathematics Subject Classification (2000)

Navigation

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy