Abstract
In this paper we present a battery of results related to how Galerkin semidiscretization in space affects some formulations of wave scattering and propagation problems when retarded boundary integral equations are used.
Similar content being viewed by others
References
Adams, R.A., Fournier, J.J.F.: Sobolev spaces, volume 140 of Pure and Applied Mathematics (Amsterdam) second edition. Elsevier/Academic Press, Amsterdam (2003)
Amrouche, C., Girault, V., Giroire, J.: Weighted Sobolev spaces for Laplace’s equation in \(R^n\). J. Math. Pures Appl. (9) 73(6), 579–606 (1994)
Bamberger, A., Duong, T.H.: Formulation variationnelle espace-temps pour le calcul par potentiel retardé de la diffraction d’une onde acoustique. I. Math. Methods Appl. Sci. 8(3), 405–435 (1986)
Bamberger, A., Duong, T.H.: Formulation variationnelle pour le calcul de la diffraction d’une onde acoustique par une surface rigide. Math. Methods Appl. Sci. 8(4), 598–608 (1986)
Banjai, L.: Multistep and multistage convolution quadrature for the wave equation: algorithms and experiments. SIAM J. Sci. Comput. 32(5), 2964–2994 (2008)
Banjai, L., Laliena, A.R., Sayas F.J.: A fully discrete Kirchhoff formula with CQ-BEM. (In preparation)
Banjai, L., Lubich, C., Melenk, J.M.: Runge-Kutta convolution quadrature for operators arising in wave propagation. Numer. Math. 119(1), 1–20 (2011)
Banjai, L., Sauter, S.: Rapid solution of the wave equation in unbounded domains. SIAM J. Numer. Anal. 47(1), 227–249 (2008)
Costabel, M.: Symmetric methods for the coupling of finite elements and boundary elements. In: Stuttgart, (ed.) Boundary elements IX, vol. 1, pp. 411–420. Comput. Mech., Southampton (1987)
Costabel, M.: Boundary integral operators on Lipschitz domains: elementary results. SIAM J. Math. Anal. 19(3), 613–626 (1988)
Costabel, M.: Time-dependent problems with the boundary integral equation method. In: Stein, E., De Borst, R., Hughes, T. (eds.) Encyclopedia of Computational Mechanics. Chapter 22. John Wiley, New York (2003)
Domínguez, V., Sayas, F.J.: Some properties of layer potentials and boundary integral operators for the wave equation. To appear in J. Int. Equations Appl
Engel, K.J., Nagel, R.: A short course on operator semigroups (Universitext). Springer, New York (2006)
Galdi, G.P., Rionero, S.: Weighted energy methods in fluid dynamics and elasticity, volume 1134 of Lecture Notes in Mathematics. Springer, Berlin (1985)
Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order. Classics in Mathematics. Springer, Berlin, 2001 (Reprint of the 1998 edition)
Ha-Duong, T.: On retarded potential boundary integral equations and their discretisation. In Topics in computational wave propagation, volume 31 of Lect. Notes Comput. Sci. Eng., pp. 301–336. Springer, Berlin (2003)
Han, H.D.: A new class of variational formulations for the coupling of finite and boundary element methods. J. Comput. Math. 8(3), 223–232 (1990)
Hanouzet, B.: Espaces de Sobolev avec poids application au problème de Dirichlet dans un demi espace. Rend. Sem. Mat. Univ. Padova 46, 227–272 (1971)
Johnson, C., Nédélec, J.C.: On the coupling of boundary integral and finite element methods. Math. Comp. 35(152), 1063–1079 (1980)
Kesavan, S.: Topics in functional analysis and applications. Wiley, New York (1989)
Laliena, A.R., Sayas, F.J.: A distributional version of Kirchhoff’s formula. J. Math. Anal. Appl. 359(1), 197–208 (2009)
Laliena, A.R., Sayas, F.J.: Theoretical aspects of the application of convolution quadrature to scattering of acoustic waves. Numer. Math. 112(4), 637–678 (2009)
Lubich, C.: On the multistep time discretization of linear initial-boundary value problems and their boundary integral equations. Numer. Math. 67(3), 365–389 (1994)
McLean, W.: Strongly elliptic systems and boundary integral equations. Cambridge University Press, Cambridge (2000)
Rynne, B.P.: The well-posedness of the electric field integral equation for transient scattering from a perfectly conducting body. Math. Methods Appl. Sci. 22(7), 619–631 (1999)
Sayas, F.J.: The validity of Johnson-Nédélec’s BEM-FEM coupling on polygonal interfaces. SIAM J. Numer. Anal. 47(5), 3451–3463 (2009)
Schanz, M.: Wave Propagation in Viscoelastic and Poroelastic Continua: A Boundary Element Approach (Lecture Notes in Applied and Computational Mechanics). Springer, Berlin (2001)
Acknowledgments
The author appreciates the thorough work and helpful suggestions of two anonymous referees and of the editor, Prof. Ralf Hiptmair. Their contribution has notably improved the final version of this article.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Sayas, F.J. Energy estimates for Galerkin semidiscretizations of time domain boundary integral equations. Numer. Math. 124, 121–149 (2013). https://doi.org/10.1007/s00211-012-0506-4
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00211-012-0506-4