Skip to main content
Log in

An Analytical Framework to Describe the Interactions Between Individuals and a Continuum

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We consider a discrete set of individual agents interacting with a continuum. Examples might be a predator facing a huge group of preys, or a few shepherd dogs driving a herd of sheep. Analytically, these situations can be described through a system of ordinary differential equations coupled with a scalar conservation law in several space dimensions. This paper provides a complete well-posedness theory for the resulting Cauchy problem. A few applications are considered in detail and numerical integrations are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Borsche, R., Colombo, R.M., Garavello, M.: On the coupling of systems of hyperbolic conservation laws with ordinary differential equations. Nonlinearity 23, 2749–2770 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Bressan, A., De Lellis, C.: Existence of optimal strategies for a fire confinement problem. Commun. Pure Appl. Math. 62(6), 789–830 (2009)

    Article  MATH  Google Scholar 

  • Capasso, V., Micheletti, A., Morale, D.: Stochastic geometric models, and related statistical issues in tumour-induced angiogenesis. Math. Biosci. 214(1–2), 20–31 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Colombo, R.M., Mercier, M., Rosini, M.D.: Stability and total variation estimates on general scalar balance laws. Commun. Math. Sci. 7(1), 37–65 (2009)

    MathSciNet  MATH  Google Scholar 

  • Colombo, R.M., Herty, M., Mercier, M.: Control of the continuity equation with a non-local flow. ESAIM Control Optim. Calc. Var. 17, 353–379 (2011). doi:10.1051/cocv/2010007

    Article  MathSciNet  MATH  Google Scholar 

  • Filippov, A.F.: Differential Equations with Discontinuous Righthand Sides. Kluwer Academic, Dordrecht (1988). Translated from the Russian

    Google Scholar 

  • Grimm, J., Grimm, W.: Deutsche Sagen, 2nd edn. Nicolaische Verlagsbichhandlung, Berlin (1865)

    Google Scholar 

  • Hoff, W.D., van der Horst, M.A., Nudel, C.B., Hellingwerf, K.J.: In: Prokaryotic Phototaxis, vol. 571, pp. 25–49. Springer, Berlin (2009). Chapter 2

    Google Scholar 

  • Kružkov, S.N.: First order quasilinear equations with several independent variables. Mat. Sb. (N.S.) 81(123), 228–255 (1970)

    MathSciNet  Google Scholar 

  • Lattanzio, C., Maurizi, A., Piccoli, B.: Moving bottlenecks in car traffic flow: a pde-ode coupled model. Preprint (2010)

  • Lécureux-Mercier, M.: Improved stability estimates on general scalar balance laws. J. Hyperbolic Differ. Equ. (2011, to appear)

  • LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  • Serre, D.: Chute libre d’un solide dans un fluide visqueux incompressible. Existence. Jpn. J. Appl. Math. 4(1), 99–110 (1987)

    Article  MATH  Google Scholar 

  • Vázquez, J.L., Zuazua, E.: Large time behavior for a simplified 1D model of fluid-solid interaction. Commun. Partial Differ. Equ. 28(9–10), 1705–1738 (2003)

    Article  MATH  Google Scholar 

  • Witman, G.B.: Chlamydomonas phototaxis. Trends Cell Biol. 3(11), 403–408 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rinaldo M. Colombo.

Additional information

Communicated by P. Newton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colombo, R.M., Lécureux-Mercier, M. An Analytical Framework to Describe the Interactions Between Individuals and a Continuum. J Nonlinear Sci 22, 39–61 (2012). https://doi.org/10.1007/s00332-011-9107-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-011-9107-0

Keywords

Mathematics Subject Classification (2000)

Navigation

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy