Abstract
The field of neuroscience is facing an unprecedented expanse in the volume and diversity of available data. Traditionally, network models have provided key insights into the structure and function of the brain. With the advent of big data in neuroscience, both more sophisticated models capable of characterizing the increasing complexity of the data and novel methods of quantitative analysis are needed. Recently, multilayer networks, a mathematical extension of traditional networks, have gained increasing popularity in neuroscience due to their ability to capture the full information of multi-model, multi-scale, spatiotemporal data sets. Here, we review multilayer networks and their applications in neuroscience, showing how incorporating the multilayer framework into network neuroscience analysis has uncovered previously hidden features of brain networks. We specifically highlight the use of multilayer networks to model disease, structure–function relationships, network evolution, and link multi-scale data. Finally, we close with a discussion of promising new directions of multilayer network neuroscience research and propose a modified definition of multilayer networks designed to unite and clarify the use of the multilayer formalism in describing real-world systems.

(Reprinted with permission from Battiston et al. 2017)



(Reprinted with permission from Yu et al. 2017)

(Reprinted with permission from Bentley and Branicky 2016)

(Reprinted with permission from Bassett et al. 2015)

(Reprinted with permission from Virkar et al. 2016)


Similar content being viewed by others
References
Allen, E.A., Damaraju, E., Plis, S.M., Erhardt, E.B., Eichele, T., Calhoun, V.D.: Tracking whole-brain connectivity dynamics in the resting state. Cereb. Cortex 24(3), 663–676 (2014)
Arenas, A., De Domenico, M.: Nonlinear dynamics on interconnected networks. Phys. D Nonlinear Phenom. 323, 1–4 (2016)
Bassett, D.S., Bullmore, E.T.: Human brain networks in health and disease. Curr. Opin. Neurol. 22(4), 340–347 (2009)
Bassett, D.S., Sporns, O.: Network neuroscience. Nat. Neurosci. 20(3), 353–364 (2017)
Bassett, D.S., Meyer-Lindenberg, A., Achard, S., Duke, T., Bullmore, E.: Adaptive reconfiguration of fractal small-world human brain functional networks. Proc. Natl. Acad. Sci. 103(51), 19518–19523 (2006)
Bassett, D.S., Wymbs, N.F., Porter, M.A., Mucha, P.J., Carlson, J.M., Grafton, S.T.: Dynamic reconfiguration of human brain networks during learning. Proc. Natl. Acad. Sci. 108(18), 7641–7646 (2011)
Bassett, D.S., Wymbs, N.F., Rombach, M.P., Porter, M.A., Mucha, P.J., Grafton, S.T.: Task-based core-periphery organization of human brain dynamics. PLoS Comput. Biol. 9(9), e1003171 (2013a)
Bassett, D.S., Porter, M.A., Wymbs, N.F., Grafton, S.T., Carlson, J.M., Peter J, M.: Robust detection of dynamic community structure in networks. Chaos Interdiscip. J. Nonlinear Sci. 23(1), 013142 (2013b)
Bassett, D.S., Yang, M., Wymbs, N.F., Grafton, S.T.: Learning-induced autonomy of sensorimotor systems. Nat. Neurosci. 18(5), 744–751 (2015)
Battiston, F., Nicosia, V., Latora, V.: Structural measures for multiplex networks. Phys. Rev. E 89(3), 032804 (2014)
Battiston, F., Nicosia, V., Chavez, M., Latora, V.: Multilayer motif analysis of brain networks. Chaos Interdiscip. J. Nonlinear Sci. 27(4), 047404 (2017)
Bazzi, M., Jeub, L.G, Arenas, A., Howison, S.D., Porter, M.A.: Generative benchmark models for mesoscale structure in multilayer networks. arXiv preprint arXiv:1608.06196 (2016a)
Bazzi, M., Porter, M.A., Williams, S., McDonald, M., Fenn, D.J., Howison, S.D.: Community detection in temporal multilayer networks, with an application to correlation networks. Multiscale Model. Simul. 14, 1–41 (2016b)
Bentley, B., Branicky, R., Barnes, C.L., Chew, Y.L., Yemini, E., Bullmore, E.T., Vértes, P.E., Schafer, W.R.: The multilayer connectome of caenorhabditis elegans. PLoS Comput. Biol. 12(12), e1005283 (2016)
Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008(10), P10008 (2008)
Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.-U.: Complex networks: structure and dynamics. Phys. Rep. 424(4), 175–308 (2006)
Boccaletti, S., Bianconi, G., Criado, R., del Genio, C.I., Gómez-Gardeñes, J., Romance, M., Sendiña-Nadal, I., Wang, Z., Zanin, M.: The structure and dynamics of multilayer networks. Phys. Rep. 544(1), 1–122 (2014)
Boutemine, O., Bouguessa, M.: Mining community structures in multidimensional networks. ACM Trans. Knowl. Discov. Data (TKDD) 11(4), 51 (2017)
Braun, U., Muldoon, S.F., Bassett, D.S.: On human brain networks in health and disease. eLS. 1–9 (2015a)
Braun, U., Schäfer, A., Walter, H., Erk, S., Romanczuk-Seiferth, N., Haddad, L., Schweiger, J.I., Grimm, O., Heinz, A., Tost, H., Meyer-Lindenberg, A., Bassett, D.S.: Dynamic reconfiguration of frontal brain networks during executive cognition in humans. Proc. Natl. Acad. Sci. 112(37), 11678–11683 (2015b)
Brookes, M.J., Tewarie, P.K., Hunt, B.A.E., Robson, S.E., Gascoyne, L.E., Liddle, E.B., Liddle, P.F., Morris, P.G.: A multi-layer network approach to meg connectivity analysis. Neuroimage 132, 425–438 (2016)
Brovelli, A., Badier, J.-M., Bonini, F., Bartolomei, F., Coulon, O., Auzias, G.: Dynamic reconfiguration of visuomotor-related functional connectivity networks. J. Neurosci. 37(4), 839–853 (2017)
Buldú, J.M., Porter, M. A.: Frequency-based brain networks: From a multiplex framework to a full multilayer description. arXiv.org (2017)
Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10(3), 186–198 (2009)
Calhoun, V.D., Eichele, T., Pearlson, G.: Functional brain networks in schizophrenia: a review. Front. Hum. Neurosci. 3, 17 (2009)
Cellai, D., López, E., Zhou, J., Gleeson, J.P., Bianconi, G.: Percolation in multiplex networks with overlap. Phys. Rev. E 88(5), 052811 (2013)
Chen, J.E., Glover, G.H.: Bold fractional contribution to resting-state functional connectivity above 0.1 Hz. NeuroImage 107, 207–218 (2015)
Chen, T., Cai, W., Ryali, S., Supekar, K., Menon, V.: Distinct global brain dynamics and spatiotemporal organization of the salience network. PLoS Biol. 14(6), e1002469 (2016)
Crofts, J.J., Forrester, M., O’Dea, R.D.: Structure-function clustering in multiplex brain networks. EPL (Europhys. Lett.) 116(1), 18003–8 (2016)
Danziger, M.M., Shekhtman, L.M., Berezin, Y., Havlin, S.: The effect of spatiality on multiplex networks. EPL (Europhys. Lett.) 115(3), 36002 (2016)
de Arruda, G.F., Cozzo, E., Moreno, Y.: On degree–degree correlations in multilayer networks. Phys. D Nonlinear Phenom. 323, 5–11 (2016)
De Domenico, M.: Manlio: multilayer modeling and analysis of human brain networks. Giga Sci. 6(5), 1–8 (2017)
De Domenico, M., Solé-Ribalta, A., Cozzo, E., Kivelä, M., Moreno, Y., Porter, M.A., Gómez, S., Arenas, A.: Mathematical formulation of multilayer networks. Phys. Rev. X 3(4), 041022 (2013)
De Domenico, M., Solé-Ribalta, A., Omodei, E., Gómez, S., Arenas, A.: Ranking in interconnected multilayer networks reveals versatile nodes. Nat. Commun. 6, 6868 (2015a)
De Domenico, M., Porter, M.A., Arenas, A.: Muxviz: a tool for multilayer analysis and visualization of networks. J. Complex Netw. 3(2), 159–176 (2015b)
De Domenico, M., Nicosia, V., Arenas, A., Latora, V.: Structural reducibility of multilayer networks. Nat. Commun. 6, 6864 (2015c)
De Domenico, M., Lancichinetti, A., Arenas, A., Rosvall, M.: Identifying modular flows on multilayer networks reveals highly overlapping organization in interconnected systems. Phys. Rev. X 5(1), 011027 (2015d)
De Domenico, M., Nicosia, V., Arenas, A., Latora, V.: Structural reducibility of multilayer networks. Nat. Commun. 6, 6864 (2015e)
De Domenico, M., Granell, C., Porter, M.A., Arenas, A.: The physics of spreading processes in multilayer networks. Nat. Phys. 12(10), 901–906 (2016a)
De Domenico, M., Sasai, S., Arenas, A.: Mapping multiplex hubs in human functional brain networks. Front. Neurosci. 10, 326 (2016b)
Decelle, A., Krzakala, F., Moore, C., Zdeborová, L.: Asymptotic analysis of the stochastic block model for modular networks and its algorithmic applications. Phys. Rev. E 84(6), 066106 (2011)
Delamillieure, P., Doucet, G., Mazoyer, B., Turbelin, M.-R., Delcroix, N., Mellet, E., Zago, L., Crivello, F., Petit, L., Tzourio-Mazoyer, N., et al.: The resting state questionnaire: an introspective questionnaire for evaluation of inner experience during the conscious resting state. Brain Res. Bull. 81(6), 565–573 (2010)
Erdos, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci. 5(1), 17–60 (1960)
Feldt, S., Bonifazi, P., Cossart, R.: Dissecting functional connectivity of neuronal microcircuits: experimental and theoretical insights. Trends Neurosci. 34(5), 225–236 (2011)
Fornito, A., Zalesky, A., Breakspear, M.: The connectomics of brain disorders. Nat. Rev. Neurosci. 16(3), 159–172 (2015)
Gallotti, R., Barthelemy, M.: The multilayer temporal network of public transport in great Britain. Sci. Data 2, 140056 (2015)
Gao, C., Sun, M., Shen, B.: Features and evolution of international fossil energy trade relationships: a weighted multilayer network analysis. Appl. Energy 156, 542–554 (2015)
Gauvin, L., Panisson, A., Cattuto, C.: Detecting the community structure and activity patterns of temporal networks: a non-negative tensor factorization approach. PLoS ONE 9(1), e86028 (2014)
Good, B.H., de Montjoye, Y.A., Clauset, A.: Performance of modularity maximization in practical contexts. Phys. Rev. E 81(4), 046106 (2010)
Gosak, M., Dolenšek, J., Markovič, R., Rupnik, M.S., Marhl, M., Stožer, A.: Multilayer network representation of membrane potential and cytosolic calcium concentration dynamics in beta cells. Chaos Solitons Fractals 80, 76–82 (2015)
Guillon, J., Attal, Y., Colliot, O., La Corte, V., Dubois, B., Schwartz, D., Chavez, M., De Vico Fallani, F:. Loss of brain inter-frequency hubs in Alzheimer’s disease. Sci. Rep. 7, 1–13 (2017)
Halu, A., De Domenico, M., Arenas, A., Sharma, A.: The multiplex network of human diseases. bioRxiv 100370 (2017)
Iacovacci, J., Bianconi, G.: Extracting information from multiplex networks. Chaos: an interdisciplinary. J. Nonlinear Sci. 26(6), 065306 (2016)
Iacovacci, J., Zhihao, W., Bianconi, G.: Mesoscopic structures reveal the network between the layers of multiplex data sets. Phys. Rev. E 92(4), 042806 (2015)
Jeub, L.G.S., Bazzi, M., Jutla, I.S., Mucha, P.J.: A generalized Louvain method for community detection implemented in MATLAB. http://netwiki.amath.unc.edu/GenLouvain (2011–2017)
Khambhati, A.N., Sizemore, A.E., Betzel, R.F., Bassett, D.S.: Modeling and interpreting mesoscale network dynamics. NeuroImage (2017)
Kivelä, M., Porter, M.A.: Isomorphisms in multilayer networks. arXiv preprint arXiv:1506.00508 (2015)
Kivela, M., Arenas, A., Barthelemy, M., Gleeson, J.P., Moreno, Y., Porter, M.A.: Multilayer networks. J. Complex Netw. 2(3), 203–271 (2014)
Lambiotte, R., Delvenne, J.-C., Barahona, M.: Random walks, Markov processes and the multiscale modular organization of complex networks. IEEE Trans. Netw. Sci. Eng. 1(2), 76–90 (2014)
Lee, K.-H., Farrow, T.F.D., Spence, S.A., Woodruff, P.W.R.: Social cognition, brain networks and schizophrenia. Psychol. Med. 34(3), 391–400 (2004)
Liao, X.-H., Xia, M.-R., Xu, T., Dai, Z.-J., Cao, X.-Y., Niu, H.-J., Zuo, X.-N., Zang, Y.-F., He, Y.: Functional brain hubs and their test–retest reliability: a multiband resting-state functional mri study. Neuroimage 83, 969–982 (2013)
Luczak, T.: Sparse random graphs with a given degree sequence. In: Proceedings of the Symposium on Random Graphs, Poznan, pp. 165–182 (1989)
Lynall, M.-E., Bassett, D.S., Kerwin, R., McKenna, P.J., Kitzbichler, M., Muller, U., Bullmore, E.: Functional connectivity and brain networks in schizophrenia. J. Neurosci. 30(28), 9477–9487 (2010)
Majhi, S., Perc, M., Ghosh, D.: Chimera states in uncoupled neurons induced by a multilayer structure. Sci. Rep. 6, 39033 (2016)
Makarov, V.V., Koronovskii, A.A., Maksimenko, V.A., Hramov, A.E., Moskalenko, O.I., Buldu, J.M., Boccaletti, S.: Emergence of a multilayer structure in adaptive networks of phase oscillators. Chaos Solitons Fractals 84, 23–30 (2016)
Maksimenko, V.A., Makarov, V.V., Bera, B.K., Ghosh, D., Dana, S.K., Goremyko, M.V., Frolov, N.S., Koronovskii, A.A., Hramov, A.E.: Excitation and suppression of chimera states by multiplexing. Phys. Rev. E 94(5–1), 052205 (2016)
Martinčić-Ipšić, S., Margan, D., Meštrović, A.: Multilayer network of language: a unified framework for structural analysis of linguistic subsystems. Phys. A Stat. Mech. Appl. 457, 117–128 (2016)
Matias, C., Miele, V.: Statistical clustering of temporal networks through a dynamic stochastic block model. J. R Stat. Soc. Seri. B (Stat. Methodol.) 79(4), 1119–1141 (2017)
Mattar, M.G., Bassett, D.S.: Brain network architecture: implications for human learning. arXiv preprintarXiv:1609.01790 (2016)
Medaglia, J.D., Lynall, M.-E., Bassett, D.S.: Cognitive network neuroscience. J. Cognit. Neurosci. 27(8), 1471–1491 (2015)
Mucha, P.J., Richardson, T., Macon, K., Porter, M.A., Onnela, J.-P.: Community structure in time-dependent, multiscale, and multiplex networks. Science 328(5980), 876–878 (2010)
Muldoon, S.F., Bassett, D.S.: Why network neuroscience? Compelling evidence and current frontiers. Comment on “understanding brain networks and brain organization” by Luiz Pessoa. Phys. Life Rev. 11(3), 455–457 (2014)
Muldoon, S.F., Bassett, D.S.: Network and multilayer network approaches to understanding human brain dynamics. Philos. Sci. 83(5), 710–720 (2016)
Muldoon, S.F., Bridgeford, E.W., Bassett, D.S.: Small-world propensity and weighted brain networks. Sci. Rep. 6(1), 22057 (2016)
Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)
Newman, M.E.J.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. 103(23), 8577–8582 (2006)
Nicosia, V., Latora, V.: Measuring and modeling correlations in multiplex networks. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 92(3), 032805–20 (2015)
Nicosia, V., Skardal, P.S., Arenas, A., Latora, V.: Collective phenomena emerging from the interactions between dynamical processes in multiplex networks. Phys. Rev. Lett. 118(13), 138302 (2017)
Ou-Yang, L., Dai, D.-Q., Li, X.-L., Min, W., Zhang, X.-F., Yang, P.: Detecting temporal protein complexes from dynamic protein–protein interaction networks. BMC Bioinform. 15(1), 335 (2014)
Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking: bringing order to the web. Technical Report, Stanford InfoLab (1999)
Papadopoulos, L., Puckett, J.G., Daniels, K.E., Bassett, D.S.: Evolution of network architecture in a granular material under compression. Phys. Rev. E 94(3), 032908 (2016)
Paul, S., Chen, Y.: Null models and modularity based community detection in multi-layer networks. arXiv preprintarXiv:1608.00623 (2016)
Pilosof, S., Porter, M.A., Pascual, M., Kéfi, S.: The multilayer nature of ecological networks. Nat. Ecol. Evol. 1, 0101 (2017)
Porter, M.A., Onnela, J.-P., Mucha, P.J.: Communities in networks. Not. AMS 56(9), 1082–1097 (2009)
Rombach, P., Porter, M.A., Fowler, J.H., Mucha, P.J.: Core-periphery structure in networks (revisited). SIAM Rev. 59(3), 619–646 (2017)
Sarzynska, M., Leicht, E.A., Chowell, G., Porter, M.A.: Null models for community detection in spatially embedded, temporal networks. J. Complex Netw. 4(3), 363–406 (2015)
Sasai, S., Homae, F., Watanabe, H., Sasaki, A.T., Tanabe, H.C., Sadato, N., Taga, G.: Frequency-specific network topologies in the resting human brain. Front. Hum. Neurosci. 8, 1022 (2014)
Solá, L., Romance, M., Criado, R., Flores, J., del Amo, A.G., Boccaletti, S.: Eigenvector centrality of nodes in multiplex networks. Chaos Interdiscip. J. Nonlinear Sci. 23(3), 033131 (2013)
Sporns, O., Betzel, R.F.: Modular brain networks. Ann. Rev. Psychol. 67(1), 613–640 (2016)
Sporns, O., Chialvo, D., Kaiser, M., Hilgetag, C.: Organization, development and function of complex brain networks. Trends Cognit. Sci. 8(9), 418–425 (2004)
Supekar, K., Menon, V., Rubin, D., Musen, M., Greicius, M.D.: Network analysis of intrinsic functional brain connectivity in alzheimer’s disease. PLoS Comput. Biol. 4(6), e1000100 (2008)
Taylor, D., Shai, S., Stanley, N., Mucha, P.J.: Enhanced detectability of community structure in multilayer networks through layer aggregation. Phys. Rev. Lett. 116(22), 228301 (2016)
Telesford, Q.K., Lynall, M.-E., Vettel, J., Miller, M.B., Grafton, S.T., Bassett, D.S.: Detection of functional brain network reconfiguration during task-driven cognitive states. NeuroImage 142, 198–210 (2016)
Telesford, Q.K., Ashourvan, A., Wymbs, N.F., Grafton, S.T., Vettel, J.M., Bassett, D.S.: Cohesive network reconfiguration accompanies extended training. Hum. Brain Map. 38(9), 4744–4759 (2017a)
Telesford, Q.K., Ashourvan, A., Wymbs, N.F., Grafton, S.T., Vettel, J.M., Bassett, D.S.: Cohesive network reconfiguration accompanies extended training. Hum. Brain Map. 38(9), 4744–4759 (2017b)
Tewarie, P., Hillebrand, A., van Dijk, B.W., Stam, C.J., O’Neill, G.C., Van Mieghem, P., Meier, J.M., Woolrich, M.W., Morris, P.G., Brookes, M.J.: Integrating cross-frequency and within band functional networks in resting-state MEG: a multi-layer network approach. NeuroImage 142(C), 324–336 (2016)
Thompson, W.H., Fransson, P.: The frequency dimension of fmri dynamic connectivity: network connectivity, functional hubs and integration in the resting brain. NeuroImage 121, 227–242 (2015)
Tijms, B.M., Wink, A.M., de Haan, W., van der Flier, W.M., Stam, C.J., Scheltens, P., Barkhof, F.: Alzheimer’s disease: connecting findings from graph theoretical studies of brain networks. Neurobiol. Aging 34(8), 2023–2036 (2013)
van den Martijn, M.P., Fornito, A.: Brain networks in schizophrenia. Neuropsychol. Rev. 24(1), 32–48 (2014)
Virkar, Y.S., Shew, W.L., Restrepo, J.G., Ott, E.: Feedback control stabilization of critical dynamics via resource transport on multilayer networks: how glia enable learning dynamics in the brain. Phys. Rev. E 94(4), 042310 (2016)
Weir, W.H., Emmons, S., Gibson, R., Taylor, D., Mucha, P.J.: Post-processing partitions to identify domains of modularity optimization. Algorithms 10(3), 93–21 (2017)
White, J.G., Southgate, E., Thomson, J.N., Brenner, S.: The structure of the nervous system of the nematode caenorhabditis elegans: the mind of a worm. Philos. Trans. R Soc. Lond. 314, 1–340 (1986)
Wymbs, N.F., Bassett, D.S., Mucha, P.J., Porter, M.A., Grafton, S.T.: Differential recruitment of the sensorimotor putamen and frontoparietal cortex during motor chunking in humans. Neuron 74(5), 936–946 (2012)
Yang, Z., Algesheimer, R., Tessone, C.J.: A comparative analysis of community detection algorithms on artificial networks. Sci. Rep. 6, 30750 (2016)
Yu, M., Engels, M., Hillebrand, A., van Straaten, E.C.W., Gouw, A.A., Teunissen, C., van der Flier, W.M., Scheltens, P., Stam, C.J.: Selective impairment of hippocampus and posterior hub areas in alzheimer’s disease: an meg-based multiplex network study. Brain 140(5), 1466–1485 (2017)
Zhang, H., Wang, C.-D., Lai, J.-H., Philip, S.Y.: Modularity in complex multilayer networks with multiple aspects: a static perspective. Appl. Inform. 4 (2017). https://doi.org/10.1186/s40535-017-0035-4
Acknowledgements
SFM would like to acknowledge support from the National Science Foundation (SMA-1734795) and the Army Research Laboratory (Contract Number: W911NF-10-2-0022). The content is solely the responsibility of the authors and does not necessarily represent the official views of any of the funding agencies.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Danielle S. Bassett.
Rights and permissions
About this article
Cite this article
Vaiana, M., Muldoon, S.F. Multilayer Brain Networks. J Nonlinear Sci 30, 2147–2169 (2020). https://doi.org/10.1007/s00332-017-9436-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00332-017-9436-8