Skip to main content
Log in

Slow Unfoldings of Contact Singularities in Singularly Perturbed Systems Beyond the Standard Form

  • Published:
Journal of Nonlinear Science Aims and scope Submit manuscript

Abstract

We develop the contact singularity theory for singularly perturbed (or ‘slow–fast’) vector fields of the general form \(z' = H(z,\varepsilon )\), \(z\in {\mathbb {R}}^n\) and \(0 < \varepsilon \ll 1\). Our main result is the derivation of computable, coordinate-independent defining equations for contact singularities under an assumption that the leading-order term of the vector field admits a suitable factorization. This factorization can in turn be computed explicitly in a wide variety of applications. We demonstrate these computable criteria by locating contact folds and, for the first time, contact cusps in general slow–fast models of biochemical oscillators and the Yamada model for self-pulsating lasers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Throughout the paper, we use prime notation \('=d/{\mathrm{d}}t\) to denote derivates with respect to the (fast) time variable t and the notation \(D_{v}\) to denote partial derivatives with respect to phase space variables v.

  2. Our use of the word contact in the present paper is unrelated to the study of contact structures defined on odd-dimensional manifolds. Rigorous definitions are provided in Sect. 3.; see also Olver (1986) for the definition of contact between regular manifolds.

  3. In general, such a global splitting cannot be expected. Hence, we will assume it; see Sect. 3.

References

  • Arnold, V.I., Gusein-Zade, S.M., Varchenko, A.N.: Singularities of Differentiable Maps, vol. 1. Birkhäuser, Boston (1985)

    MATH  Google Scholar 

  • Arnold, V.I., Gusein-Zade, S.M., Varchenko, A.N.: Singularities of Differentiable Maps, vol. 2. Birkhäuser, Boston (1988)

    MATH  Google Scholar 

  • Arnold, V.I., Afrajmovich, V.S., Il’yashenko, Y.S., Shil’nikov, L.P.: Dynamical Systems V: Bifurcation Theory and Catastrophe Theory. Springer, Berlin (1994)

    Google Scholar 

  • Baer, S.M., Erneux, T.: Singular Hopf bifurcation to relaxation oscillations I. SIAM J. Appl. Math. 46, 721–739 (1986)

    MathSciNet  MATH  Google Scholar 

  • Baer, S.M., Erneux, T.: Singular Hopf bifurcation to relaxation oscillations II. SIAM J. Appl. Math. 52, 1651–1664 (1992)

    MathSciNet  MATH  Google Scholar 

  • Baer, S.M., Erneux, T., Rinzel, J.: The slow passage through a Hopf bifurcation: delay, memory effects, and resonance. SIAM J. Appl. Math. 49, 55–71 (1989)

    MathSciNet  MATH  Google Scholar 

  • Benoit, E.: Systemes lentes-rapides en \({\mathbb{R}}^3\) et leurs canards. Asterisque 109–110, 159–191 (1983)

    MATH  Google Scholar 

  • Broer, H.W., Kaper, T.J., Krupa, M.: Geometric desingularization of a cusp singularity in slow–fast systems with applications to Zeeman’s examples. J. Dyn. Differ. Equ. 25, 925–958 (2013)

    MathSciNet  MATH  Google Scholar 

  • Dumortier, F., Roussarie, R.: Canard Cycles and Centre Manifolds. Memoirs of the AMS. American Mathematical Society, Providence (1996)

    MATH  Google Scholar 

  • Fenichel, N.: Geometric singular perturbation theory for ordinary differential equations. J. Differ. Equ. 31, 53–98 (1979)

    MathSciNet  MATH  Google Scholar 

  • Goeke, A., Walcher, S.: A constructive approach to quasi-steady state reduction. J. Math. Chem. 52, 2596–2626 (2014)

    MathSciNet  MATH  Google Scholar 

  • Goldbeter, A.: A minimal cascade model for the mitotic oscillator involving cyclin and cdc2 kinase. Proc. Natl. Acad. Sci. 88(20), 9107–9111 (1991)

    Google Scholar 

  • Golubitsky, M., Guillemin, V.: Stable Mappings and Their Singularities. Springer, New York (1973)

    MATH  Google Scholar 

  • Huber, A., Szmolyan, P.: Geometric singular perturbation analysis of the Yamada model. SIAM J. Appl. Dyn. Syst. 4, 607–648 (2005)

    MathSciNet  MATH  Google Scholar 

  • Izumiya, S., Romero Fuster, M.C., Soares Ruas, M.A.: Differential Geometry from a Singularity Theory Viewpoint. World Scientific, Hackensack (2015)

    MATH  Google Scholar 

  • Jardón-Kojakhmetov, H., Broer, H.W., Roussarie, R.: Analysis of a slow–fast system near a cusp singularity. J. Differ. Equ. 260, 3785–3843 (2016)

    MathSciNet  MATH  Google Scholar 

  • Jelbart, S., Wechselberger, M.: Two-stroke relaxation oscillators. Nonlinearity 33, 2364 (2020)

    MathSciNet  Google Scholar 

  • Jones, C.K.R.T.: Geometric singular perturbation theory. Lect. Notes Math. 1609, 44–118 (1995)

    MathSciNet  MATH  Google Scholar 

  • Kosiuk, I., Szmolyan, P.: Geometric analysis of the Goldbeter minimal model for the embryonic cell cycle. J. Math. Biol. 72, 1337–1368 (2016)

    MathSciNet  MATH  Google Scholar 

  • Krupa, M., Szmolyan, P.: Extending geometric singular perturbation theory to nonhyperbolic points: fold and canard points in two dimensions. SIAM J. Math. Anal. 33, 286–314 (2001)

    MathSciNet  MATH  Google Scholar 

  • Kuehn, C.: Multiple Time Scale Dynamics. Springer, Berlin (2015)

    MATH  Google Scholar 

  • Kuznetsov, Y.: Elements of Applied Bifurcation Theory. Springer, New York (2004)

    MATH  Google Scholar 

  • Liebscher, S.: Bifurcation Without Parameters. Springer, Cham (2015)

    MATH  Google Scholar 

  • Lizarraga, I., Wechselberger, M.: Computational singular perturbation method for nonstandard slow–fast systems, to appear. SIAM J. Appl. Dyn. Syst. 19, 994–1028 (2020)

    MathSciNet  MATH  Google Scholar 

  • Mather, J.N.: Stability of \(C^{\infty }\) mappings, III. Finitely determined map-germs. Publ. Math. IHES 35, 279–308 (1969)

    Google Scholar 

  • Mishchenko, E.F., Kolessov, Y.S., Kolessov, A.Y., Rozov, N.K.: Asymptotic Methods in Singularly Perturbed Systems. Consultants Bureau, New York (1994)

    Google Scholar 

  • Montaldi, J.A.: Contact with applications to submanifolds. University of Liverpool (1983)

  • Montaldi, J.A.: On contact between submanifolds. Mich. Math. J. 33, 195–199 (1986)

    MathSciNet  MATH  Google Scholar 

  • Montaldi, J.A.: On generic composites of maps. Bull. Lond. Math. Soc. 23, 81–85 (1991)

    MathSciNet  MATH  Google Scholar 

  • Murdock, J.: Normal Forms and Unfoldings for Local Dynamical Systems. Springer, New York (2003)

    MATH  Google Scholar 

  • Neishtadt, A.I.: Persistence of stability loss for dynamic bifurcations I. Differ. Uravn. 23, 2060–2067 (1987)

    Google Scholar 

  • Neishtadt, A.I.: Persistence of stability loss for dynamic bifurcations II. Differ. Uravn. 24, 223–226 (1988)

    Google Scholar 

  • Novak, B., Tyson, J.: Design principles of biochemical oscillators. Nat. Rev. Mol. Cell Biol. 9(12), 981–991 (2008)

    Google Scholar 

  • Olver, P.J.: Applications of Lie Groups to Differential Equations. Springer, New York (1986)

    MATH  Google Scholar 

  • Schauer, M., Heinrich, R.: Quasi-steady-state approximation in the mathematical modelling of biochemical reaction networks. Math. Biosci. 65, 155–171 (1983)

    MathSciNet  MATH  Google Scholar 

  • Stiefenhofer, M.: Quasi-steady-state approximation for chemical reaction networks. J. Math. Biol. 36, 593–609 (1998)

    MathSciNet  MATH  Google Scholar 

  • Szmolyan, P., Wechselberger, M.: Canards in \({\mathbb{R}}^3\). J. Differ. Equ. 177, 419–453 (2001)

    MATH  Google Scholar 

  • Szmolyan, P., Wechselberger, M.: Relaxation oscillations in \({\mathbb{R}}^3\). J. Differ. Equ. 200, 69–104 (2004)

    MATH  Google Scholar 

  • Takens, F.: Constrained Differential Equations. Springer, Berlin (1975)

    MATH  Google Scholar 

  • Takens, F.: Constrained equations; a study of implicit differential equations and their discontinuous solutions. In: Hilton, P. (ed.) Structural Stability, the Theory of Catastrophes and Applications in the Sciences, vol. 525. Springer, Berlin (1976)

    Google Scholar 

  • Takens, F.: Implicit differential equations; some open problems. In: Burlet, O., Ronga, F. (eds.) Singularités D’applications Différentiables. Lecture Notes in Mathematics, vol. 535. Springer, Berlin (1976)

    Google Scholar 

  • Wan, Y.-H.: On the uniqueness of invariant manifolds. J. Differ. Equ. 24, 268–273 (1977)

    MathSciNet  MATH  Google Scholar 

  • Wechselberger, M.: À propos de canards. Trans. Am. Math. Soc. 364, 3289–3309 (2012)

    MathSciNet  MATH  Google Scholar 

  • Wechselberger, M.: Geometric Singular Perturbation Theory Beyond the Standard Form. Springer, Cham (2020)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the Australian Research Council Grant DP180103022, and would like to thank the referees for their suggestions, which have helped to improve the exposition of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian Lizarraga.

Additional information

Communicated by George Haller.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

We write down basic definitions for jet spaces and the contact group of diffeomorphisms (see, e.g., Golubitsky and Guillemin 1973; Izumiya et al. 2015 for a full treatment of the standard singularity theory).

Definition 16

The k-jet space \(J^{k}(n,m)\) of smooth germs \(f:{\mathbb {R}}^n \rightarrow {\mathbb {R}}^m\) is defined by

$$\begin{aligned} J^{k}(n,m)= & {} {\mathscr {M}}_n \cdot {\mathscr {E}}(n,m)/ {\mathscr {M}}^{k+1}_n \cdot {\mathscr {E}}(n,m), \end{aligned}$$

where

$$\begin{aligned} {\mathscr {E}}(n,m)= & {} ({\mathscr {E}}_n)^m \end{aligned}$$

is the direct product of m copies of the set \({\mathscr {E}}_n\) of smooth germs from \({\mathbb {R}}^n\) to \({\mathbb {R}}\),

$$\begin{aligned} {\mathscr {M}}_n= & {} {\mathscr {E}}_n \cdot \{x_1, \ldots , x_n\} \end{aligned}$$

is the unique maximal ideal of germs vanishing at the origin, and

$$\begin{aligned} {\mathscr {M}}^k_n= & {} {\mathscr {E}}_n \cdot \{ x_1^{i_1}, \ldots , x_n^{i_n}, i_1 + \cdots + i_n = k\} \end{aligned}$$

is the set of germs with vanishing partial derivatives of order less than or equal to \(k-1\) at the origin.

Remark 16

The set \(J^k(n,m)\) may be identified with the set of polynomials of total degree less than or equal to k.

The definition of contact classes used in the paper is due to Mather:

Definition 17

The contact group \(\mathscr {K}\) is the set of germs of diffeomorphisms of \(({\mathbb {R}}^n \times {\mathbb {R}}^m, (0,0))\) which can be written in the form

$$\begin{aligned} H(x,y)= & {} (h(x),H_1(x,y)), \end{aligned}$$

where h acts on the right (i.e., \(h \cdot f = f \circ h^{-1}\)) and \(H_1(x,0) = 0\) for x near 0. We say that f is \(\mathscr {K}\)-equivalent to g if g lies in the group orbit of f. We refer to this as the contact class of f.

Remark 17

Suppose \(f,g \in {\mathscr {M}}_n \cdot {\mathscr {E}}(n,m)\) and \(k = (h,H) \in \mathscr {K}\). Then \(g = k \cdot f\) if and only if

$$\begin{aligned} (x,g(x))= & {} H(h^{-1}(x),f(h^{-1}(x))). \end{aligned}$$

Observe that H sends the graph of f to the graph of g near 0 (i.e., the zero sets of \(\mathscr {K}\)-equivalent germs are diffeomorphic).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lizarraga, I., Marangell, R. & Wechselberger, M. Slow Unfoldings of Contact Singularities in Singularly Perturbed Systems Beyond the Standard Form. J Nonlinear Sci 30, 3161–3198 (2020). https://doi.org/10.1007/s00332-020-09647-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00332-020-09647-4

Keywords

Mathematics Subject Classification

Navigation

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy