Abstract
A curve skeleton is used to represent a 3D object in many different applications. It is a 1D curve that captures topology of the 3D object. The proposed method extracts a curve skeleton from the vector field inside the 3D object. A vector at each voxel of the 3D object is calculated using a pseudonormal vector. By using such a calculation, the computation time is significantly reduced compared with using a typical potential field. A curve skeleton is then extracted from the pseudonormal vector field by using a skeleton-growing algorithm. The proposed algorithm uses high-curvature boundary voxels to search for a set of critical points and skeleton branches near high-curvature areas. The set of detected critical points is then used to grow a curve skeleton in the next step. All parameters of our algorithms are calculated from the 3D object itself, without user intervention. The effectiveness of our method is demonstrated in our experiments.



















Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Au, O.K.C., Tai, C.L., Chu, H.K., Cohen-Or, D., Lee, T.Y., Project: Skeleton Extraction by Mesh Contraction. http://visgraph.cse.ust.hk/projects/skeleton/
Au, O.K.C., Tai, C.L., Chu, H.K., Cohen-Or, D., Lee, T.Y.: Skeleton extraction by mesh contraction. ACM Trans. Graph. 27, 44:1–44:10 (2008)
Aujay, G., Hétroy, F., Lazarus, F., Depraz, C.: Harmonic skeleton for realistic character animation. In: SCA’07, pp. 151–160 (2007)
Baran, I., Popović, J.: Automatic rigging and animation of 3D characters. In: SIGGRAPH’07, p. 72 (2007)
Bouix, S., Siddiqi, K.: Divergence-based medial surfaces. In: ECCV’00, pp. 603–618 (2000)
Cheng, Z.Q., Xu, K., Li, B., Wang, Y.Z., Dang, G., Jin, S.Y.: A mesh meaningful segmentation algorithm using skeleton and minima-rule. In: ISVC’07, pp. 671–680 (2007)
Chuang, J.H., Tsai, C.H., Ko, M.C.: Skeletonization of three-dimensional object using generalized potential field. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1241–1251 (2000)
Cornea, N.D., Demirci, M.F., Silver, D., Shokoufandeh, A., Dickinson, S.J., Kantor, P.B.: 3D object retrieval using many-to-many matching of curve skeletons. In: SMI’05, pp. 368–373 (2005)
Cornea, N.D., Silver, D., Min, P.: Curve-skeleton properties, applications, and algorithms. IEEE Trans. Vis. Comput. Graph. 13, 530–548 (2007)
Cornea, N.D., Silver, D., Yuan, X., Balasubramanian, R.: Computing hierarchical curve-skeletons of 3D objects. Vis. Comput. 21(11), 945–955 (2005)
Demarsin, K., Vanderstraeten, D., Roose, D.: Meshless extraction of closed feature lines using histogram thresholding. Comput.-Aided Des. Appl. 5(5), 589–600 (2008)
Dey, T.K., Sun, J.: Curve skeletons for 3D shapes. http://www.cse.ohio-states.edu/~tamaldey/cskel.html/
Dey, T.K., Sun, J.: Defining and computing curve-skeletons with medial geodesic function. In: SGP’06, pp. 143–152 (2006)
Globus, A., Levit, C., Lasinski, T.: A tool for visualizing the topology of three-dimensional vector fields. In: VIS’91, pp. 33–40, 408 (1991)
Goh, W.B.: Strategies for shape matching using skeletons. Comput. Vis. Image Underst. 110, 326–345 (2008)
Hadwiger, M., Kniss, J.M., Rezk-salama, C., Weiskopf, D., Engel, K.: Real-Time Volume Graphics. A. K. Peters, Ltd., Natick (2006)
Hassouna, M.S., Farag, A.A.: Robust centerline extraction framework using level sets. In: CVPR’05, pp. 458–465 (2005)
Katz, S., Tal, A.: Hierarchical mesh decomposition using fuzzy clustering and cuts. ACM Trans. Graph. 22, 954–961 (2003)
Liao, D.: GPU-accelerated multi-valued solid voxelization by slice functions in real time. In: SCCG’08, pp. 113–120 (2010)
Lien, J.M., Keyser, J., Amato, N.M.: Simultaneous shape decomposition and skeletonization. In: SPM’06, pp. 219–228 (2006)
Liu, P.C., Wu, F.C., Ma, W.C., Liang, R.H., Ouhyoung, M.: Automatic animation skeleton construction using repulsive force field. In: PG’03, p. 409 (2003)
Ma, C.M., Wan, S.Y., Lee, J.D.: Three-dimensional topology preserving reduction on the 4-subfields. IEEE Trans. Pattern Anal. Mach. Intell. 24(12), 1594–1605 (2002)
Monga, O., Lengagne, R., Deriche, R.: Extraction of the zero-crossings of the curvature derivatives in volumic 3D medical images: a multi-scale approach. In: CVPR’94, pp. 852–855 (1994)
Ogniewicz, R., Ilg, M.: Voronoi skeletons: theory and applications. In: CVPR’92, pp. 63–69 (1992)
Pantuwong, N., Sugimoto, M.: 3D Curve-skeleton extraction algorithm using a pseudo-normal vector field. In: VMV’10, pp. 235–242 (2010)
Pascucci, V., Scorzelli, G., Bremer, P.T., Mascarenhas, A.: Robust on-line computation of Reeb graphs: simplicity and speed. ACM Trans. Graph. 26 (2007)
Poirier, M., Paquette, E.: Rig retargeting for 3D animation. In: GI’09, pp. 103–110 (2009)
Schwarz, M., Seidel, H.P.: Fast parallel surface and solid voxelization on GPUs. ACM Trans. Graph. 29, 179:1–179:10 (2010)
She, F.H., Chen, R.H., Gao, W.M., Hodgson, P.H., Kong, L.X., Hong, H.Y.: Improved 3D thinning algorithms for skeleton extraction. In: DICTA’09, pp. 14–18 (2009)
Shilane, P., Min, P., Kazhdan, M., Funkhouser, T.: The Princeton shape benchmark. In: SMI’04, pp. 167–178 (2004)
Theisel, H., Weinkauf, T., Hege, H.C., Seidel, H.P.: Saddle connectors—an approach to visualizing the topological skeleton of complex 3D vector fields. In: VIS’03, p. 30 (2003)
Wang, Y.S., Lee, T.Y.: Curve-skeleton extraction using iterative least squares optimization. IEEE Trans. Vis. Comput. Graph. 14, 926–936 (2008)
Acknowledgements
The authors thank Dr. Yasuyuki Matsushita (Microsoft Research Asia) for his constructive duscussions and valuable suggestions. The research is sponsored by Microsoft Research Collaborative Research Projects (MSR CORE7).
Author information
Authors and Affiliations
Corresponding author
Electronic Supplementary Material
Below is the link to the electronic supplementary material.
(MPG 20.0 MB)
Rights and permissions
About this article
Cite this article
Pantuwong, N., Sugimoto, M. Skeleton growing: an algorithm to extract a curve skeleton from a pseudonormal vector field. Vis Comput 29, 203–216 (2013). https://doi.org/10.1007/s00371-012-0721-0
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-012-0721-0