Skip to main content

Advertisement

Log in

A video compression-cum-classification network for classification from compressed video streams

  • Original article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Video analytics can achieve increased speed and efficiency by operating directly on the compressed video format, thereby alleviating the decoding burden on the analytics server. The encoded video streams are rich in semantic binary information and this information can be utilized more efficiently to train the classifiers. Motivated by the same notion, a deep learning-based video compression-cum-classification network has been proposed. In the proposed work, the binary-coded semantic information is extracted by using an auto encoder-based video compression component and the same fed to the MobileNetv2-based classifier for the classification of the given video streams based on their content. Using large-scale user-generated content provided by YouTube UGC dataset, it has been demonstrated that using deep neural networks for compression not only provides on-par compression results to traditional methods, it makes analytical processing of these videos faster. Video content tagging of YouTube UGC dataset has been used as the analytics task. The proposed DLVCC approach performs 10 × faster with 30 × fewer parameters than MobileNetv2 in video tagging of compressed video with no loss in accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

Data are available on request from the first author.

References

  1. Tran, D., Ray, J., Shou, Z., Chang, S-F., and Paluri, M., (2017). ConvNet architecture search for spatiotemporal feature learning. arXiv preprint arXiv:1708.05038. DOI: https://doi.org/10.48550/arXiv.1708.05038.

  2. Carreira, J. and Zisserman, A.: Quo vadis, Action recognition—a new model and the kinetics dataset. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’17) (2017). DOI: https://doi.org/10.48550/arXiv.1705.07750.

  3. Fischer, F., Forsch, C., Herglotz, C., and Kaup, A.: Analysis of neural image compression networks for machine-to-machine communication. IEEE International Conference on Image Processing (ICIP). (2021)

  4. Liu, M-Y., Huang, X., Wang, T-C., and Mallya, A.: Generative adversarial networks for image and video synthesis: algorithms and applications. (2021) arXiv:2008.02793v2 [cs.CV]. DOI: https://doi.org/10.48550/arXiv.2008.02793.

  5. Lu, G., Ouyang, W., Xu, D., Zhang, X., Cai C., et al.: DVC: an end-to-end deep video compression framework. (2019) arXiv: 1812.00101v3 [eess.IV].

  6. Kim, S., Park, J. S., Bampis, C. G., Lee, J., Markey, M. K. et al.: Adversarial video compression guided by soft edge detection. (2018) arXiv:1811.10673v1 [eess.IV].

  7. Chen, Z., Tianyu, H., Jin X., & Wu, F.: Learning for video compression. (2019) arXiv:1804.09869v2 [cs.MM].

  8. Wu, C. Y., Singhal, N., & Krahenbhul, P.: Video compression through image interpolation. (2018) arXiv:1804.06919v1 [cs.CV] 18 Apr 2018.

  9. Han, J., Lombardo, S., Schroers, C., & Mandt, S.: Deep probabilistic video compression. (2018) arXiv:1810.02845v1 [cs.CV].

  10. Rippel, O., Nair, S., Lew, C., Branson, S., Anderson, A. G., et. al.: Learned video compression. (2018) arXiv:1811.06981v1 [eess.IV].

  11. Kubiak, N., Hadfield, S.: TACTIC: Joint rate-distortion-accuracy optimisation for low bitrate compression. (2021) arXiv preprint arXiv:2109.10658. DOI: https://doi.org/10.48550/arXiv.2109.10658

  12. Zhang, B., Wang, L., Qiao, Y., and Wang H.: Real time action recognition with enhanced motion vector CNNs. IEEE Conference on Computer Vision and Pattern Recognition (CVPR’15) (2016).

  13. Benbarrad, T., Eloutouate, L., Arioua, M., Elouaai, F., Laanaoui, M.D.: Impact of image compression on the performance of steel surface defect classification with a CNN. J. Sens. Actuator Netw. 10(4), 73 (2021). https://doi.org/10.3390/jsan10040073

    Article  Google Scholar 

  14. Sandula, P., Okade, M.: Compressed domain video zoom motion analysis utilizing CURL. Multim. Tools Appl. 81, 12759–12776 (2022)

    Article  Google Scholar 

  15. Tu, Z., Liu, X., Xiao, X.: A general dynamic knowledge distillation method for visual analytics. IEEE Trans. Image Process. 31, 6517–6531 (2022)

    Article  Google Scholar 

  16. Chang, J.-W., Javaheripi, M., Hidano, S., and Koushanfar, F.: Adversarial Attacks on Deep Learning-based Video Compression and Classification Systems. (2022) arXiv:2203.10183v1 [cs.CV]. DOI: https://doi.org/10.48550/arXiv.2203.10183.

  17. Bidwe, R.V., et al.: Deep learning approaches for video compression: a bibliometric analysis. Big Data Cogn. Comput. 6(2), 44 (2022). https://doi.org/10.3390/bdcc6020044

    Article  Google Scholar 

  18. Liu, H., et al. (2022). Video super-resolution based on deep learning: a comprehensive survey. Artif. Intell. Rev..

  19. Howard, A., Sandler, M., Chu, G., Chen, L. C., Chen, B., Tan, M., & Adam, H.: Searching for mobilenetv3. In Proceedings of the IEEE/CVF International Conference on Computer Vision (pp. 1314-1324) (2019).

  20. Huo, Y. et al.: Lightweight action recognition in compressed videos. In: Bartoli, A., Fusiello, A. (eds) Computer Vision – ECCV 2020 Workshops. ECCV 2020. Lecture Notes in Computer Science. vol 12536. Springer, Cham (2020) https://doi.org/10.1007/978-3-030-66096-3_24

  21. Santos, S. and Almeida, J.: Faster and accurate compressed video action recognition straight from the frequency domain In 2020 33rd SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI). Recife/Porto de Galinhas, Brazil, pp. 62–68 (2020).

  22. Zhang, X., Shao, J., & Zhang, J.: Low-complexity deep video compression with a distributed coding architecture. (2023) https://ar5iv.org/abs/2303.11599

  23. Chao-Yuan, W., Manzil, Z., Hexiang, H., Manmatha, R., Alexander, J. S., Philipp, K.: (2018) arXiv:1712.00636v2. https://doi.org/10.48550/arXiv.1712.00636.

  24. Shou, Z., et al.: DMC-Net: generating discriminative motion cues for fast compressed video action recognition. IEEE/CVF Conf. Comput. Vis. Pattern Recogn. CVPR 2019, 1268–1277 (2019). https://doi.org/10.1109/CVPR.2019.00136

    Article  Google Scholar 

  25. Raivo, K., Haiping, L.: VideoLightFormer: lightweight action recognition using transformers. (2021) arXiv:2107.00451v1 [cs.CV] 1 Jul 2021.

  26. Jiao, L., et al.: New generation deep learning for video object detection: a survey. IEEE Trans. Neural Netw. Learn. Syst. 33(8), 3195–3215 (2022). https://doi.org/10.1109/TNNLS.2021.3053249

    Article  MathSciNet  Google Scholar 

  27. Kim, M.-J., Lee, Y.-L.: Object detection-based video compression. Appl. Sci. 12(9), 4525 (2022). https://doi.org/10.3390/app12094525

    Article  Google Scholar 

  28. Zhai, D., Zhang, X., Li, X., Xing, X., Zhou, Y., Ma, C.: Object detection methods on compressed domain videos: An overview, comparative analysis, and new directions. Measurement 207, 112371 (2023)

    Article  Google Scholar 

  29. Poyser, M., Abarghouei, A.-A., and Breckon, T. P.: On the impact of lossy image and video compression on the performance of deep convolutional neural network architectures. 25th International Conference on Pattern Recognition (ICPR). (2020)

  30. Ingle, P.Y., Kim, Y.-G.: Real-time abnormal object detection for video surveillance in smart cities. Sensors 22(10), 3862 (2022). https://doi.org/10.3390/s22103862

    Article  Google Scholar 

  31. Muralidhara, S., Hashmi, K.A., Pagani, A., Liwicki, M., Stricker, D., Afzal, M.Z.: Attention-guided disentangled feature aggregation for video object detection. Sensors 22(21), 8583 (2022). https://doi.org/10.3390/s22218583

    Article  Google Scholar 

  32. Gandor, T., Nalepa, J.: First gradually, then suddenly: understanding the impact of image compression on object detection using deep learning. Sensors 22(3), 1104 (2022). https://doi.org/10.3390/s22031104

    Article  Google Scholar 

  33. O’Byrne, M., Sugrue, M. V., Kokaram, A.: Impact of video compression on the performance of object detection systems for surveillance applications. 2022 18th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS), Madrid, Spain, 2022, pp. 1–8 (2022) doi: https://doi.org/10.1109/AVSS56176.2022.9959476.

  34. Wang, L., et al.: Temporal segment networks: Towards good practices for deep action recognition. European Conference on Computer Vision. pp 20–36 (2016).

  35. Ma, C-Y., Chen, M-H., Kira Z., and AlRegib, G.: TS-LSTM and temporal-inception: Exploiting spatiotemporal dynamics for activity recognition. (2017) arXiv preprint arXiv:1703.10667. DOI: https://doi.org/10.48550/arXiv.1703.10667

  36. Girdhar, R., Ramanan, D., Gupta, A., Sivic, J., Russell, B.: ActionVLAD: learning spatio-temporal aggregation for action classification. IEEE Conf. Comput. Vis. Pattern Recogn. CVPR (2017). https://doi.org/10.1109/CVPR.2017.337

    Article  Google Scholar 

  37. Joshi, S., Ojo, S., Yadav, S., Gulia, P., Gill, N.S., Alsberi, H., Rizwan, A., Hassan, M.M.: Object detection and classification from compressed video streams. Expert Syst. p.e1338 (2023)

  38. Wang, Y., Inguva, S., and Adsumilli, B.: YouTube UGC dataset for video compression research. IEEE 21st International Workshop on Multimedia Signal Processing (MMSP) (2019)

Download references

Author information

Authors and Affiliations

Authors

Contributions

S.Y. and P.G. were involved in conceptualization; Formal analysis was done by S.Y.; S.Y., P.G. and N.S.G. helped in methodology; S.Y. contributed to resources; Supervision was done by P.G. and N.S.G.; P.G. and N.S.G. helped in validation; S.Y. and P.G. were involved in visualization; S.Y. helped in writing—original draft; P.K.S. helped in writing—review & editing, M.Y. was involved in validation, P.K.S. assisted in formal analysis, Supervision was done by P.K.P., P.K.S. helped in visualization. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Piyush Kumar Shukla.

Ethics declarations

Conflicts of interests

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, S., Gulia, P., Gill, N.S. et al. A video compression-cum-classification network for classification from compressed video streams. Vis Comput 40, 7539–7558 (2024). https://doi.org/10.1007/s00371-023-03242-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-023-03242-w

Keywords

Navigation

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy