Skip to main content
Log in

The Sandpile Group of Polygon Rings and Twisted Polygon Rings

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

Let \(C_{k_1}, \ldots , C_{k_n}\) be cycles with \(k_i\ge 2\) vertices (\(1\le i\le n\)). By attaching these n cycles together in a linear order, we obtain a graph called a polygon chain. By attaching these n cycles together in a cyclic order, we obtain a graph, which is called a polygon ring if it can be embedded on the plane; and called a twisted polygon ring if it can be embedded on the Möbius band. It is known that the sandpile group of a polygon chain is always cyclic. Furthermore, there exist edge generators. In this paper, we not only show that the sandpile group of any (twisted) polygon ring can be generated by at most three edges, but also give an explicit relation matrix among these edges. So we obtain a uniform method to compute the sandpile group of arbitrary (twisted) polygon rings, as well as the number of spanning trees of (twisted) polygon rings. As an application, we compute the sandpile groups of several infinite families of polygon rings, including some that have been done before by ad hoc methods, such as, generalized wheel graphs, ladders and Möbius ladders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability statement

All data generated or analysed during this study are included in this published article.

References

  1. Alfaro, C.A., Valencia, C.E.: On the sandpile group of the cone of a graph. Linear Algebra Appl. 436(5), 1154–1176 (2012)

    Article  MathSciNet  Google Scholar 

  2. Bacher, R., de la Harpe, P., Nagnibeda, T.: The lattice of integral flows and the lattice of integral cuts on a finite graph. Bull. Soc. Math. Fr. 125(2), 167–198 (1997)

    Article  MathSciNet  Google Scholar 

  3. Bai, H.: On the critical group of the \(n\)-cube. Linear Algebra Appl. 369, 251–261 (2003)

    Article  MathSciNet  Google Scholar 

  4. Bak, P., Tang, C., Wiesenfeld, K.: Self-organized criticality: an explanation of the 1/f noise. Phys. Rev. Lett. 59(4), 381 (1987)

    Article  Google Scholar 

  5. Baker, M., Norine, S.: Riemann–Roch and Abel–Jacobi theory on a finite graph. Adv. Math. 215(2), 766–788 (2007)

    Article  MathSciNet  Google Scholar 

  6. Becker, R., Glass, D.B.: Cyclic critical groups of graphs. Australas. J. Comb. 64, 366–375 (2016)

    MathSciNet  MATH  Google Scholar 

  7. Berget, A., Manion, A., Maxwell, M., Potechin, A., Reiner, V.: The critical group of a line graph. Ann. Comb. 16(3), 449–488 (2012)

    Article  MathSciNet  Google Scholar 

  8. Biggs, N.L.: Algebraic potential theory on graphs. Bull. Lond. Math. Soc. 29(6), 641–682 (1997)

    Article  MathSciNet  Google Scholar 

  9. Biggs, N.L.: Chip-firing and the critical group of a graph. J. Algebraic Comb. 9(1), 25–45 (1999)

    Article  MathSciNet  Google Scholar 

  10. Bond, B., Levine, L.: Abelian networks III: the critical group. J. Algebraic Comb. 43(3), 635–663 (2016)

    Article  MathSciNet  Google Scholar 

  11. Chan, S.H., Hollmann, D.L., Pasechnik, H.D.: Sandpile groups of generalized de Bruijn and Kautz graphs and circulant matrices over finite fields. J. Algebra 421, 268–295 (2014)

    Article  MathSciNet  Google Scholar 

  12. Chandler, D.B., Sin, P., Xiang, Q.: The Smith and critical groups of Paley graphs. J. Algebraic Comb. 41(4), 1013–1022 (2015)

    Article  MathSciNet  Google Scholar 

  13. Chen, H., Mohar, B.: The sandpile group of a polygon flower. Discrete Appl. Math. 270, 68–82 (2019)

    Article  MathSciNet  Google Scholar 

  14. Chen, P., Hou, Y.: On the sandpile group of \(P_4\times C_n\). Eur. J. Comb. 29(2), 532–534 (2008)

    Article  Google Scholar 

  15. Chen, P., Hou, Y., Woo, C.: On the critical group of the Möbius ladder graph. Australas. J. Comb. 36, 133–142 (2006)

    MATH  Google Scholar 

  16. Christianson, H., Reiner, V.: The critical group of a threshold graph. Linear Algebra Appl. 349, 233–244 (2002)

    Article  MathSciNet  Google Scholar 

  17. Cori, R., Rossin, D.: On the sandpile group of dual graphs. Eur. J. Comb. 21(4), 447–459 (2000)

    Article  MathSciNet  Google Scholar 

  18. Dartois, A., Fiorenzi, F., Francini, P.: Sandpile group on the graph \(D_n\) of the dihedral group. Eur. J. Comb. 24, 815–824 (2003)

    Article  Google Scholar 

  19. Deryagina, M., Mednykh, I.: On the Jacobian group for Möbius ladder and prism graphs. In: Mladenov, I.M. (ed.) Geometry, Integrability and Quantization XV, pp. 117–126. Avangard Prima, Sofia (2014)

    MATH  Google Scholar 

  20. Dhar, D.: Self-organized critical state of sandpile automaton models. Phys. Rev. Lett. 64(14), 1613–1616 (1990)

    Article  MathSciNet  Google Scholar 

  21. Ducey, J.E.: On the critical group of the missing Moore graph. Discrete Math. 340(5), 1104–1109 (2017)

    Article  MathSciNet  Google Scholar 

  22. Ducey, J.E., Hill, I., Sin, P.: The critical group of the Kneser graph on 2-subsets of an \(n\)-element set. Linear Algebra Appl. 546, 154–168 (2018)

    Article  MathSciNet  Google Scholar 

  23. Glass, D.B.: Critical groups of graphs with dihedral actions II. Eur. J. Comb. 61, 25–46 (2017)

    Article  MathSciNet  Google Scholar 

  24. Glass, D.B., Merino, C.: Critical groups of graphs with dihedral actions. Eur. J. Comb. 39, 95–112 (2014)

    Article  MathSciNet  Google Scholar 

  25. Goel, G., Perkinson, D.: Critical groups of iterated cones. Linear Algebra Appl. 567, 138–142 (2019)

    Article  MathSciNet  Google Scholar 

  26. Hou, Y., Woo, C., Chen, P.: On the sandpile group of the square cycle \(C_n^2\). Linear Algebra Appl. 418(2–3), 457–467 (2006)

    Article  MathSciNet  Google Scholar 

  27. Jacobson, B., Niedermaier, A., Reiner, V.: Critical groups for complete multipartite graphs and Cartesian products of complete graphs. J. Graph Theory 44(3), 231–250 (2003)

    Article  MathSciNet  Google Scholar 

  28. Krepkiy, I.A.: The sandpile groups of chain-cyclic graphs. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), vol. 421 (Teoriya Predstavleniĭ, Dinamicheskie Sistemy, Kombinatornye Metody. XXIII), pp. 94–112 (2014)

  29. Levine, L.: Sandpile groups and spanning trees of directed line graphs. J. Comb. Theory Ser. A 118(2), 350–364 (2011)

    Article  MathSciNet  Google Scholar 

  30. Lorenzini, D.J.: Arithmetical graphs. Math. Ann. 285(3), 481–501 (1989)

    Article  MathSciNet  Google Scholar 

  31. Musiker, G.: The critical groups of a family of graphs and elliptic curves over finite fields. J. Algebraic Comb. 30(2), 255–276 (2009)

    Article  MathSciNet  Google Scholar 

  32. Raza, Z.: On the critical group of certain subdivided wheel graphs. Punjab Univ. J. Math. (Lahore) 47(2), 57–64 (2015)

    MathSciNet  MATH  Google Scholar 

  33. Reiner, V., Tseng, D.: Critical groups of covering, voltage and signed graphs. Discrete Math. 318, 10–40 (2014)

    Article  MathSciNet  Google Scholar 

  34. Shi, W.-N., Pan, Y.-L., Wang, J.: The critical groups for \(K_m\vee P_n\) and \(P_m\vee P_n\). Australas. J. Comb. 50, 113–125 (2011)

    Google Scholar 

  35. Toumpakari, E.: On the sandpile group of regular trees. Eur. J. Comb. 28(3), 822–842 (2007)

    Article  MathSciNet  Google Scholar 

  36. Zhou, Y. F., Chen, H. Y.: The sandpile group of a family of nearly complete graphs. Bull. Malays. Math. Sci. Soc. 44, 625–637 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank the referee for his helpful comments, which provide the content of Remark 6.

Funding

This work was done while the H. Y. Chen visited The Simon Fraser University. The hospitality of the hosting institution is greatly acknowledged. The visit was funded by the Fujian Provincial Education Department. H. Y. Chen was supported by the National Natural Science Foundation of China (Grant numbers 11771181, 12071180). B. Mohar was supported in part by the NSERC Discovery Grant R611450 (Canada), by the Canada Research Chairs program, and by the Research Project J1-8130 of ARRS (Slovenia). On leave from IMFM, Department of Mathematics, University of Ljubljana.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyan Chen.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Mohar, B. The Sandpile Group of Polygon Rings and Twisted Polygon Rings. Graphs and Combinatorics 38, 113 (2022). https://doi.org/10.1007/s00373-022-02514-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00373-022-02514-x

Keywords

Mathematics Subject Classification

Navigation

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy