Skip to main content

Polynomial-Time Approximation Schemes for Subset-Connectivity Problems in Bounded-Genus Graphs

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We present the first polynomial-time approximation schemes (PTASes) for the following subset-connectivity problems in edge-weighted graphs of bounded-genus: Steiner tree, low-connectivity survivable-network design, and subset TSP. The schemes run in \(\mathcal{O}(n \log n)\) time for graphs embedded on both orientable and nonorientable surfaces. This work generalizes the PTAS framework from planar graphs to bounded-genus graphs: any problem that is shown to be approximable by the planar PTAS framework of Borradaile et al. (ACM Trans. Algorithms 5(3), 2009) will also be approximable in bounded-genus graphs by our extension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Before the publication of [14], we used [15] together with fast algorithms for finding shortest noncontractible cycles [10] but this can be avoided now.

  2. We would like to thank Christian Sommer for a discussion on this matter.

  3. Note that polynomial time is not crucial here as the number of portals is constant.

References

  1. Arnborg, S., Proskurowski, A.: Linear time algorithms for NP-hard problems restricted to partial k-trees. Discrete Appl. Math. 23(1), 11–24 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arora, S.: Approximation schemes for NP-hard geometric optimization problems: A survey. Math. Program. 97(1–2), 43–69 (2003)

    MATH  MathSciNet  Google Scholar 

  3. Baker, B.S.: Approximation algorithms for NP-complete problems on planar graphs. J. ACM 41(1), 153–180 (1994)

    Article  MATH  Google Scholar 

  4. Bateni, M., Chekuri, C., Ene, A., Hajiaghayi, M.T., Korula, N., Marx, D.: Prize-collecting Steiner problems on planar graphs. In: SODA’11: Proceedings of the 22nd ACM-SIAM Symposium on Discrete Algorithms, pp. 1028–1049. SIAM, Philadelphia (2011)

    Chapter  Google Scholar 

  5. Bateni, M., Hajiaghayi, M., Marx, D.: Approximation schemes for Steiner forest on planar graphs and graphs of bounded treewidth. In: STOC’10: Proceedings of the 42nd Annual ACM Symposium on Theory of Computing, pp. 211–220. ACM, New York (2010)

    Chapter  Google Scholar 

  6. Borradaile, G., Klein, P.: The two-edge connectivity survivable network problem in planar graphs. In: ICALP’08: Proceedings of the 35th International Colloquium on Automata, Languages and Programming. LNCS, vol. 5125, pp. 485–501. Springer, Berlin (2008)

    Chapter  Google Scholar 

  7. Borradaile, G., Klein, P.N., Mathieu, C.: A polynomial-time approximation scheme for Steiner tree in planar graphs. In: SODA’07: Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1285–1294 (2007)

    Google Scholar 

  8. Borradaile, G., Klein, P.N., Mathieu, C.: Steiner tree in planar graphs: an O(nlogn) approximation scheme with singly exponential dependence on epsilon. In: WADS’07: Proceedings of the 10th Workshop on Algorithms and Data Structures. LNCS, vol. 4619, pp. 275–286. Springer, Berlin (2007)

    Google Scholar 

  9. Borradaile, G., Klein, P.N., Mathieu, C.: An O(nlogn) approximation scheme for Steiner tree in planar graphs. ACM Trans. Algorithms 5(3) (2009)

  10. Cabello, S., Chambers, E.W.: Multiple source shortest paths in a genus g graph. In: SODA’07: Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 89–97. SIAM, Philadelphia (2007)

    Google Scholar 

  11. Chimani, M., Mutzel, P., Zey, B.: Improved Steiner tree algorithms for bounded treewidth. In: IWOCA’11: Revised Selected Papers of the 22nd International Workshop on Combinatorial Algorithms. LNCS, vol. 7056, pp. 374–386. Springer, Berlin (2011)

    Google Scholar 

  12. Demaine, E.D., Fomin, F.V., Hajiaghayi, M., Thilikos, D.M.: Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs. J. ACM 52(6), 866–893 (2005)

    Article  MathSciNet  Google Scholar 

  13. Demaine, E.D., Hajiaghayi, M.: Bidimensionality: New connections between FPT algorithms and PTASs. In: SODA’05: Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 590–601 (2005)

    Google Scholar 

  14. Demaine, E.D., Hajiaghayi, M., Kawarabayashi, K.: Contraction decomposition in H-minor-free graphs and algorithmic applications. In: STOC’11: Proceedings of the 43rd Symposium on Theory of Computing, pp. 441–450. ACM, New York (2011)

    Google Scholar 

  15. Demaine, E.D., Hajiaghayi, M., Mohar, B.: Approximation algorithms via contraction decomposition. In: SODA’07: Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 278–287. SIAM, Philadelphia (2007)

    Google Scholar 

  16. Eppstein, D.: Dynamic generators of topologically embedded graphs. In: SODA’03: Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 599–608. SIAM, Philadelphia (2003)

    Google Scholar 

  17. Eppstein, D., Italiano, G., Tamassia, R., Tarjan, R., Westbrook, J., Yung, M.: Maintenance of a minimum spanning forest in a dynamic planar graph. J. Algorithms 13(1), 33–54 (1992). Special issue for 1st SODA

    Article  MATH  MathSciNet  Google Scholar 

  18. Erickson, J., Whittlesey, K.: Greedy optimal homotopy and homology generators. In: SODA’05: Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1038–1046. SIAM, Philadelphia (2005)

    Google Scholar 

  19. Erickson, R.E., Monma, C.L., Veinott, A.F., Jr.: Send-and-split method for minimum-concave-cost network flows. Math. Oper. Res. 12(4), 634–664 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  20. Grohe, M.: Local tree-width, excluded minors, and approximation algorithms. Combinatorica 23(4), 613–632 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  21. Henzinger, M.R., Klein, P.N., Rao, S., Subramanian, S.: Faster shortest-path algorithms for planar graphs. J. Comput. Syst. Sci. 55(1), 3–23 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  22. Klein, P.N.: A subset spanner for planar graphs, with application to subset TSP. In: STOC’06: Proceedings of the 38th Annual ACM Symposium on Theory of Computing, pp. 749–756 (2006)

    Google Scholar 

  23. Klein, P.N.: A linear-time approximation scheme for TSP in undirected planar graphs with edge-weights. SIAM J. Comput. 37(6), 1926–1952 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  24. Korach, E., Solel, N.: Linear time algorithm for minimum weight Steiner tree in graphs with bounded treewidth. Manuscript (1990)

  25. Mehlhorn, K.: A faster approximation algorithm for the Steiner problem in graphs. Inf. Process. Lett. 27, 125–128 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  26. Mohar, B.: A linear time algorithm for embedding graphs in an arbitrary surface. SIAM J. Discrete Math. 12(1), 6–26 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  27. Mohar, B., Thomassen, C.: Graphs on Surfaces. The John Hopkins University Press, Baltimore (2001)

    MATH  Google Scholar 

  28. Robertson, N., Seymour, P.: Graph minors. XVI. Excluding a non-planar graph. J. Comb. Theory, Ser. B 89(1), 43–76 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  29. Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width. J. Algorithms 7(3), 309–322 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  30. Tazari, S., Müller-Hannemann, M.: Shortest paths in linear time on minor-closed graph classes, with an application to Steiner tree approximation. Discrete Appl. Math. 157, 673–684 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  31. Tazari, S., Müller-Hannemann, M.: Dealing with large hidden constants: Engineering a planar Steiner tree PTAS. ACM J. Exp. Algorithmics 16(3) (2011). Article 3.16. Special Issue on ALENEX’09

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siamak Tazari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borradaile, G., Demaine, E.D. & Tazari, S. Polynomial-Time Approximation Schemes for Subset-Connectivity Problems in Bounded-Genus Graphs. Algorithmica 68, 287–311 (2014). https://doi.org/10.1007/s00453-012-9662-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-012-9662-2

Keywords

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy