Skip to main content
Log in

A hybrid cascade neural network with an optimized pool in each cascade

  • Focus
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

This paper proposes a new architecture and learning algorithms for a hybrid cascade neural network with pool optimization in each cascade. The proposed system is different from existing cascade systems in its capability to operate in an online mode, which allows it to work with non-stationary and stochastic nonlinear chaotic signals with the required accuracy. Compared to conventional analogs, the proposed system provides computational simplicity and possesses both tracking and filtering capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Almeida L, Silva F (1990) Speeding up backpropagation. Adv Neural Comput, pp 151–158

  • Angelov P, Filev D (2004) An approach to online identification of Takagi–Sugeno fuzzy models. IEEE Trans Syst Man Cybern Part B Cybern 34(1):484–498

    Article  Google Scholar 

  • Angelov P, Filev D (2005) Simpl e TS: a simplified method for learning evolving Takagi–Sugeno fuzzy models. In: Proceedings of FUZZ-IEEE, pp 1068–1073

  • Angelov P, Kasabov N (2005) Evolving computational intelligence systems. In: Proceedings of the 1st international workshop on genetic fuzzy systems, pp 76–82

  • Angelov P, Lughofer E (2008) Data-driven evolving fuzzy systems using e TS and FLEXFIS: comparative analysis. Int J Gen Syst 37(1):45–67

    Article  MATH  Google Scholar 

  • Angelov P, Zhou X (2006) Evolving fuzzy systems from data streams in real-time. In: Proceedings of 2006 international symposium on evolving fuzzy systems, pp 29–35

  • Angelov P, Zhou X (2008) Evolving fuzzy-rule-based classifiers from data streams. IEEE Trans Fuzzy Syst 16(6):1462–1475

    Article  Google Scholar 

  • Angelov P, Xydeas C, Filev D (2004) Online identification of MIMO evolving Takagi–Sugeno fuzzy models. In: Proceedings of IJCNN-FUZZ-IEEE, pp 55–60

  • Angelov P, Lughofer E, Klement E (2005) Two approaches to data-driven design of evolving fuzzy systems: e TS and FLEXFIS. In: Proceedings of NAFIPS, pp 31–35

  • Angelov P, Giglio V, Guardiola C, Lughofer E, Lujan J (2006) An approach to modelbased fault detection in industrial measurement systems with application to engine test benches. Meas Sci Technol 17(7):1809–1818

    Article  Google Scholar 

  • Angelov P, Zhou X, Filev D, Lughofer E (2007) Architectures for evolving fuzzy rulebased classifiers. In: Proceedings of SMC, pp 2050–2055

  • Angelov P, Lughofer E, Zhou X (2008) Evolving fuzzy classifiers using different model architectures. Fuzzy Sets Syst 159(23):3160–3182

    Article  MATH  MathSciNet  Google Scholar 

  • Angelov P, Filev D, Kasabov N (2010) Evolving intelligent systems: methodology and applications. Wiley, New York

    Book  Google Scholar 

  • Avedjan E, Barkan G, Levin I (1999) Cascade neural networks. Avtomatika i telemekhanika 3:38–55

    Google Scholar 

  • Bodyanskiy Y, Kolodyazhniy V (2010) Cascaded multi-resolution spline-based fuzzy neural network. In: Proceedings of international symposium on evolving intelligent systems, pp 26–29

  • Bodyanskiy Y, Pliss I (1990) Adaptive generalized forecasting of multivariate stochastic signals. In: Proceedings Latvian signal proceedings of international conference, vol 2, pp 80–83

  • Bodyanskiy Y, Viktorov Y (2009a) The cascaded neo-fuzzy architecture and its on-line learning algorithm. Intell Process 9:110–116

    Google Scholar 

  • Bodyanskiy Y, Viktorov Y (2009b) The cascaded neo-fuzzy architecture using cubic-spline activation functions. Inf Theor Appl 16(3):245–259

    Google Scholar 

  • Bodyanskiy Y, Vorobyov S (2000) Recurrent neural network detecting changes in the properties of nonlinear stochastic sequences. Autom Remote Control 61(7):1113–1124

    Google Scholar 

  • Bodyanskiy Y, Madjarov N, Pliss I (1983) Adaptive forecasting of nonstationary processes. Avtomatika I Izchislitelna Tekhnika 6:5–12

    Google Scholar 

  • Bodyanskiy Y, Pliss I, Solovyova T (1986) Multistep optimal predictors of multidimensional non-stationary stochastic processes. Doklady AN USSR A(12):47–49

    Google Scholar 

  • Bodyanskiy Y, Pliss I, Solovyova T (1989) Adaptive generalized forecasting of multidimensional stochastic sequences. Doklady AN USSR A(9):73–75

    Google Scholar 

  • Bodyanskiy Y, Stephan A, Vorobyov S (1999) Algorithm for adaptive identification of dynamical parametrically nonstationary objects. J Comp Syst Sci Int 38(1):14–38

    Google Scholar 

  • Bodyanskiy Y, Cichocki A, Vorobyov S (2001a) An adaptive noise cancellation for multisensory signals. Fluct Noise Lett 1(1):13–24

    Google Scholar 

  • Bodyanskiy Y, Kolodyazhniy V, Stephan A (2001b) An adaptive learning algorithm for a neuro-fuzzy network, pp 68–75

  • Bodyanskiy Y, Kokshenev I, Kolodyazhniy V (2003a) An adaptive learning algorithm for a neo-fuzzy neuron. In: Proceedings of international conference of European Union Society for fuzzy logic and technology, pp 375–379

  • Bodyanskiy Y, Kolodyazhniy V, Otto P (2003b) A new learning algorithm for a forecasting neuro-fuzzy network. Integr Comput Aided Eng 10(4):399–409

    Google Scholar 

  • Bodyanskiy Y, Dolotov A, Pliss I, Viktorov Y (2008) The cascaded orthogonal neural network. Inf Sci Comput 2:13–20

    Google Scholar 

  • Bodyanskiy Y, Viktorov Y, Pliss I (2009) The cascade growing neural network using quadratic neurons and its learning algorithms for on-line information processing. Intell Inf Eng Syst 13:27–34

    Google Scholar 

  • Bodyanskiy Y, Grimm P, Teslenko N (2011a) Evolving cascaded neural network based on multidimensional Epanechnikov’s kernels and its learning algorithm. Inf Technol Knowl 5(1):25–30

    Google Scholar 

  • Bodyanskiy Y, Kharchenko O, Vynokurova O (2011b) Hybrid cascaded neural network based on wavelet-neuron. Inf Theor Appl 18(4):335–343

    Google Scholar 

  • Bodyanskiy Y, Teslenko N, Vynokurova O (2011c) Cascaded GMDH-wavelet-neuro-fuzzy network. In: international workshop on inductive modelling, pp 22–30

  • Chan L, Fallside F (1987) An adaptive learning algorithm for backpropagation networks. Comput Speech Lang 2:205–218

    Article  Google Scholar 

  • Cichocki A, Unbehauen R (1993) Neural Netw Optim Signal Process. Teubner, Stuttgart

    Google Scholar 

  • Fahlman S, Lebiere C (1990) The cascade-correlation learning architecture. Adv Neural Inf Process Syst 2:524–532

    Google Scholar 

  • Haykin S (1999) Neural networks: a comprehensive foundation. Prentice Hall, NJ

    MATH  Google Scholar 

  • Hoff M, Widrow B (1960) Adaptive switching circuits, pp 96–104

  • Holmes G, Veitch A (1991) A modified quickprop algorithm. Neural Comput 3:310–311

    Article  Google Scholar 

  • Jang JSR, Sun CT, Muzutani E (1997) Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Kaczmarz S (1937) Angenäeherte Auflösung von Systemen linearer Gleichungen. Bull Acad Polon Sci Lett A 35:355–357

  • Kaczmarz S (1993) Approximate solution of systems of linear equations. Int J Control 53:1269–1271

    Article  MathSciNet  Google Scholar 

  • Kadirkamanathan V, Niranjan M (1993) A function estimation approach to sequential learning with neural networks. Neural Comput 5:954–975

    Article  Google Scholar 

  • Kasabov N (2001) Evolving fuzzy neural networks for supervised/unsupervised online knowledge-based learning. IEEE Trans Syst Man Cybern Part B Cybern 31(6):902–918

    Article  Google Scholar 

  • Kasabov N (2003) Evolving connectionist systems. Springer, London

    Book  Google Scholar 

  • Kasabov N (2007) Evolving connectionist systems: the knowledge engineering approach. Springer, London

    Google Scholar 

  • Kasabov N, Song Q (2002) DENFIS: dynamic evolving neural-fuzzy inference system and its application for time-series prediction. IEEE Trans Fuzzy Syst 10(2):144–154

    Article  Google Scholar 

  • Kasabov N, Zhang D, Pang P (2005) Incremental learning in autonomous systems: evolving connectionist systems for on-line image and speech recognition. In: Proceedings of IEEE workshop on advanced robotics and its social impacts, pp 120–125

  • Kruschke J, Movellan J (1991) Benefits of gain: speed learning and minimum layers backpropagation networks. IEEE Trans Syst Man Cybern 21:273–280

    Article  MathSciNet  Google Scholar 

  • Kusanagi H, Miki T, Uchino E, Yamakawa T (1992) A neo-fuzzy neuron and its applications to system identification and prediction of the system behavior. In: Proceedings of international conference on fuzzy logic and neural networks, pp 477–483

  • Ljung L (1999) System identification: theory for the user. Prentice Hall, NJ

    Book  Google Scholar 

  • Lughofer E (2006) Process safety enhancements for data-driven evolving fuzzy models. In: Proceedings of the 2nd symposium on evolving fuzzy systems, pp 42–48

  • Lughofer E (2008a) Evolving vector quantization for classification of on-line data streams. In: Proceedings of conference on computational intelligence for modelling, control and automation, pp 780–786

  • Lughofer E (2008b) Extensions of vector quantization for incremental clustering. Pattern Recognit 41(3):995–1011

    Article  MATH  Google Scholar 

  • Lughofer E (2008c) FLEXFIS: a robust incremental learning approach for evolving ts fuzzy models. IEEE Trans Fuzzy Syst 16(6):1393–1410

    Article  Google Scholar 

  • Lughofer E (2010a) On dynamic selection of the most informative samples in classification problems. In: Proceedings of the 9th international conference in machine learning and applications, pp 120–125

  • Lughofer E (2010b) On-line evolving image classifiers and their application to surface inspection. Image Vis Comput 28(7):1063–1172

    Article  Google Scholar 

  • Lughofer E (2011) Evolving fuzzy systems and methodologies: advanced concepts and applications. Springer, Heidelberg

    Book  Google Scholar 

  • Lughofer E, Angelov P (2009) Detecting and reacting on drifts and shifts in on-line data streams with evolving fuzzy systems. In: Proceedings of the IFSA/EUSFLAT 2009 conference, pp 931–937

  • Lughofer E, Angelov P (2011) Handling drifts and shifts in on-line data streams with evolving fuzzy systems. Appl Soft Comput 11(2):2057–2068

    Article  Google Scholar 

  • Lughofer E, Bodenhofer U (2006) Incremental learning of fuzzy basis function networks with a modified version of vector quantization. IPMU 2006:56–63

    Google Scholar 

  • Lughofer E, Guardiola C (2008a) Applying evolving fuzzy models with adaptive local error bars to on-line fault detection. In: Proceedings of genetic and evolving fuzzy systems 2008, pp 35–40

  • Lughofer E, Guardiola C (2008b) On-line fault detection with data-driven evolving fuzzy models. J Control Intell Syst 36(4):307–317

    MATH  Google Scholar 

  • Lughofer E, Kindermann S (2008) Improving the robustness of data-driven fuzzy systems with regularization. In: Proceedings of the IEEE world congress on computational intelligence 2008, pp 703–709

  • Lughofer E, Kindermann S (2010) Sparse FIS: data-driven learning of fuzzy systems with sparsity constraints. IEEE Trans Fuzzy Syst 18(2):396–411

    Google Scholar 

  • Lughofer E, Klement E (2003) Online adaptation of Takagi–Sugeno fuzzy inference systems. In: Proceedings of CES-IMACS multiconference

  • Lughofer E, Klement E (2004) Premise parameter estimation and adaptation in fuzzy systems with open-loop clustering methods. In: Proceedings of FUZZ-IEEE 2004

  • Lughofer E, Efendic H, Re L, Klement E (2003) Filtering of dynamic measurements in intelligent sensors for fault detection based on data-driven models. In: Proceedings of the IEEE CDC conference, pp 463–468

  • Lughofer E, Klement E, Lujan J, Guardiola C (2004) Model-based fault detection in multi-sensor measurement systems. In: Proceedings of IEEE IS 2004, pp 184–189

  • Lughofer E, Huellermeier E, Klement E (2005) Improving the interpretability of data-driven evolving fuzzy systems. In: Proceedings of EUSFLAT 2005, pp 28–33

  • Lughofer E, Angelov P, Zhou X (2007) Evolving single- and multi-model fuzzy classifiers with FLEXFIS- class. In: Proceedings of FUZZ-IEEE 2007, pp 363–368

  • Lughofer E, Smith J, Caleb-Solly P, Tahir M, Eitzinger C, Sannen D, Nuttin M (2009) On human-machine interaction during on-line image classifier training. IEEE Trans Syst Man Cybern Part A Syst Hum 39(5):960–971

  • Miki T, Yamakawa T (1999) Analog implementation of neo-fuzzy neuron and its on-board learning. In: Computational intelligence and applications. WSES Press, Piraeus, pp 144–149

  • Narendra K, Parthasarathy K (1990) Identification and control of dynamical systems using neural networks. IEEE Trans Neural Netw 1(1):4–27

    Article  Google Scholar 

  • Prechelt L (1997) Investigation of the Cas Cor family of learning algorithms. Neural Netw 10:885–896

    Article  Google Scholar 

  • Rong NJ, Huang GB, Saratchandran P (2006) Sequential adaptive fuzzy inference system (SAFIS) for nonlinear system identification and prediction. Fuzzy Sets Syst 157(9):1260–1275

    Article  MATH  MathSciNet  Google Scholar 

  • Schalkoff R (1997) Artificial neural networks. The McGraw-Hill Comp., New York

    MATH  Google Scholar 

  • Uchino E, Yamakawa T (1997) Soft computing based signal prediction, restoration and filtering. Fuzzy logic, neural networks and genetic algorithms. In: Intelligent Hybrid Systems. Kluwer Academic Publishers, Boston, pp 331–349

  • Yingwei L, Sundararajan N, Saratchandran P (1997) A sequential learning scheme for function approximation using minimal radial basis function (RBF) neural networks. Neural Comput 9:461–478

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Tyshchenko.

Additional information

Communicated by V. Loia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bodyanskiy, Y., Tyshchenko, O. & Kopaliani, D. A hybrid cascade neural network with an optimized pool in each cascade. Soft Comput 19, 3445–3454 (2015). https://doi.org/10.1007/s00500-014-1344-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-014-1344-3

Keywords

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy