Abstract
Parameters identification of permanent magnetic synchronous motor (PMSM), which significantly influences the control performance of the drive system, is an important and challenging task of power electronic system. The problem requires both high solution quality and fast convergence speed due to the constraints of hardware. This paper presents a self-adaptive differential evolution algorithm with hybrid mutation operator (SHDE) for parameters identification problem. In this method, a novel mutation operator, called “current-to-archive-best,” is developed by mixing the best solutions randomly selected from archive set and current population. Thus, the algorithm could use the best searching memories so far to generate promising solutions, yielding a faster evolving procedure. Besides, the corresponding control parameters of SHDE are also self-adapted without tedious trial-and-error progress to get appropriate values. Moreover, the parameters estimation program is inserted into the PMSM simulation that is solved by using Newton–Raphson method without any pre-assumption and simplification. This framework, which may be used under any working conditions with large disturbance, is different from other publications, resulting in wider applications. The proposed method applied to parameters identification of PMSM is evaluated on a PMSM drive system with two different operations. The comprehensive results and statistical analyses, compared with other state-of-the-art algorithms, show that SHDE could find high-quality solutions with higher convergence speed and probability.










Similar content being viewed by others

Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Abbreviations
- \(A_{\mathrm{v}}\) :
-
Amplification of speed loop after PI controller
- \(A_{\mathrm{i}}\) :
-
Amplification of current loop after PI controller
- Cr:
-
Crossover rate
- D :
-
Optimization problem dimension
- F :
-
Scaling factor
- G :
-
Generation index of DE algorithm
- J :
-
Inertia coefficient \((\hbox {kg}\,\hbox {m}^{2}\))
- \(L_{d}\) :
-
d-Axis inductance (H)
- \(L_{d}^\mathrm{min}\) :
-
Lower limit of d-axis inductance (H)
- \(L_{d}^\mathrm{max}\) :
-
Upper limit of d-axis inductance (H)
- \(L_{q}\) :
-
q-Axis inductance (H)
- \(L_{q}^\mathrm{min}\) :
-
Lower limit of q-axis inductance (H)
- \(L_{q}^\mathrm{max}\) :
-
Upper limit of q-axis inductance (H)
- \(R_{\mathrm{s}}\) :
-
Stator resistance (\(\Omega )\)
- \(R_{\mathrm{s}}^\mathrm{min}\) :
-
Lower limit of stator resistance \((\Omega )\)
- \(R_{\mathrm{s}}^\mathrm{max}\) :
-
Upper limit of stator resistance \((\Omega )\)
- \(T_{\mathrm{e}}\) :
-
Electromagnetic torque (\(\hbox {N}\,\hbox {m}\))
- \(T_{\mathrm{l}}\) :
-
Load torque (\(\hbox {N}\,\hbox {m}\))
- \(\mathbf{U}_{i}\) :
-
Trail vector for ith individual
- \(\mathbf{V}_{i}\) :
-
Mutation vector for ith individual
- \(\mathbf{X}_{i}\) :
-
Target vector, i.e., ith individual
- \(i_{d}, i_{q}\) :
-
dq-Axis current (A)
- \(i_{d\_\mathrm{ref}}, i_{q\_\mathrm{ref}}\) :
-
Reference dq-axis current (A)
- h :
-
Step size (s)
- k :
-
Iteration index of Newton–Raphson method
- \(k_{\max }\) :
-
Max iteration number of Newton–Raphson method
- p :
-
Number of pole pairs
- ps:
-
Population size of DE algorithm
- t :
-
Sampling time index of PMSM simulation
- \(v_{d}, v_{q}\) :
-
dq-Axis voltage (V)
- \(v_{a}, v_{b}, v_{c}\) :
-
abc-Axis voltage (V)
- \(\varepsilon \) :
-
Small positive constant of termination criteria for Newton–Raphson method
- \(\theta \) :
-
Rotor position (rad)
- \({\psi }_{\mathrm{r}}\) :
-
Rotor flux linkage (Wb)
- \({\psi }_{\mathrm{r}}^\mathrm{min}\) :
-
Lower limit of rotor flux linkage (Wb)
- \({\psi }_{\mathrm{r}}^\mathrm{max}\) :
-
Upper limit of rotor flux linkage (Wb)
- \({\omega }_{\mathrm{e}}\) :
-
Electrical angular speed (rad/s)
- \({\omega }_{\mathrm{m}}\) :
-
Mechanical angular speed (rad/s)
- \({\omega }_{m\_\mathrm{ref}}\) :
-
Reference mechanical angular speed (rad/s)
References
Abbass HA (2002) The self-adaptive Pareto differential evolution algorithm. In: Proceedings of the 2002 congress on evolutionary computation (CEC ’02), vol 1, pp 831–836
Abbasbandy S (2003) Improving Newton–Raphson method for nonlinear equations by modified Adomian decomposition method. Appl Math Comput 145(2–3):887–893
Alpert BK (1999) Hybrid Gauss-trapezoidal quadrature rules. SIAM J Sci Comput 20(5):1551–1584
Bolognani S, Tubiana L, Zigliotto M (2003) Extended Kalman filter tuning in sensorless PMSM drives. IEEE Trans Ind Appl 39(6):1741–1747
Brest J, Greiner S, Boskovic B, Mernik M, Zumer V (2006a) Self-adapting control parameters in differential evolution: a comparative study on numerical benchmark problems. IEEE Trans Evol Comput 10(6):646–657
Brest J, Zumer V, Maucec MS (2006b) Self-adaptive differential evolution algorithm in constrained real-parameter optimization. In: IEEE congress on evolutionary computation, vols 1–6, pp 215–222
Brest J, Boskovic B, Greiner S, Zumer V, Maucec MS (2007) Performance comparison of self-adaptive and adaptive differential evolution algorithms. Soft Comput 11(7):617–629
Bruck HA, McNeill SR, Sutton MA, Peters WH (1989) Digital image correlation using Newton–Raphson method of partial differential correction. Exp Mech 29(3):261–267
Crisfield MA (1984) Accelerating and damping the modified Newton–Raphson method. Comput Struct 18(3):395–407
Das S, Suganthan PN (2011) Differential evolution: a survey of the state-of-the-art. IEEE Trans Evol Comput 15(1):4–31
Das S, Konar A, Chakraborty UK (2005) Two improved differential evolution schemes for faster global search. In: Genetic and evolutionary computation conference (GECCO 2005), vols 1 and 2, pp 991–998
Das S, Mullick SS, Suganthan PN (2016) Recent advances in differential evolution—an updated survey. Swarm Evol Comput 27:1–30
Demeure CJ, Mullis CT (1990) A Newton–Raphson method for moving-average spectral factorization using the Euclid algorithm. IEEE Trans Acoust Speech Signal Process 38(10):1697–1709
Derrac J, Garcia S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol Comput 1(1):3–18
Dragoi E-N, Dafinescu V (2016) Parameter control and hybridization techniques in differential evolution: a survey. Artif Intell Rev 45(4):447–470
Durgun I, Yildiz AR (2012) Structural design optimization of vehicle components using cuckoo search algorithm. Mater Test 54(3):185–188
Eiben AE, Hinterding R, Michalewicz Z (1999) Parameter control in evolutionary algorithms. IEEE Trans Evol Comput 3(2):124–141
El-Hawary ME, Landrigan JK (1982) Optimum operation of fixed-head hydro-thermal electric power systems: Powell’s hybrid method versus Newton–Raphson method. IEEE Trans Power Appar Syst 101(3):547–554
El-Sousy FFM (2011) Robust wavelet-neural-network sliding-mode control system for permanent magnet synchronous motor drive. IET Electr Power Appl 5(1):113–132
Emara HM, Elshamy W, Bahgat A (2008) Parameter identification of induction motor using modified particle swarm optimization algorithm. In: IEEE international symposium on industrial electronics, pp 841–847
Garcia S, Herrera F (2008) An extension on “statistical comparisons of classifiers over multiple data sets” for all pairwise comparisons. J Mach Learn Res 9:2677–2694
Huang VL, Qin AK, Suganthan PN (2006) Self-adaptive differential evolution algorithm for constrained real-parameter optimization. In: IEEE congress on evolutionary computation, vols 1–6, pp 17–24
Hwang CC, Cho YH (2001) Effects of leakage flux on magnetic fields of interior permanent magnet synchronous motors. In: 8th joint magnetism and magnetic materials-international magnetics conference (MMM-INTERMAG), January 7–11, vol 37, pp 3021–3024
Ichikawa S, Tomita M, Doki S, Okuma S (2006) Sensorless control of permanent-magnet synchronous motors using online parameter identification based on system identification theory. IEEE Trans Ind Electron 53(2):363–372
Jabbar MA, Dong J, Liu Z (2004) Determination of machine parameters for internal permanent magnet synchronous motors. In: 2nd international conference (Conf. Publ. No. 498) on power electronics, machines and drives (PEMD 2004), vol 2, pp 805–810
Jong-Wook K, Sang Woo K (2005) Parameter identification of induction motors using dynamic encoding algorithm for searches (DEAS). IEEE Trans Energy Convers 20(1):16–24
Kampisios K, Zanchetta P, Gerada C, Trentin A, Jasim O (2008) Induction motor parameters identification using genetic algorithms for varying flux levels. In: 13th international power electronics and motion control conference, vols 1–5, pp 887–892
Kan L, Ziqiang Z, Jing Z, Qiao Z, Anwen S (2010) Multi-parameter estimation of non-salient pole permanent magnet synchronous machines by using evolutionary algorithms. In: IEEE 5th international conference on bio-inspired computing: theories and applications, pp 766–774
Kao R (1974) A comparison of Newton–Raphson methods and incremental procedures for geometrically nonlinear analysis. Comput Struct 4(5):1091–1097
Kiani M, Yildiz AR (2015) A comparative study of non-traditional methods for vehicle crashworthiness and NVH optimization. Arch Comput Methods Eng. doi:10.1007/s11831-015-9155-y
Li XD (2010) Niching without niching parameters: particle swarm optimization using a ring topology. IEEE Trans Evol Comput 14(1):150–169
Liang JJ, Qin AK, Suganthan PN, Baskar S (2006) Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evol Comput 10(3):281–295
Liu J, Lampinen J (2005) A fuzzy adaptive differential evolution algorithm. Soft Comput 9(6):448–462
Liu L, Cartes DA (2007) Synchronisation based adaptive parameter identification for permanent magnet synchronous motors. IET Control Theory Appl 1(4):1015–1022
Liu W, Liu L, Cartes DA (2008) Efforts on real-time implementation of PSO based PMSM parameter identification. In: IEEE Power and Energy Society (PES) general meeting: conversion and delivery of electrical energy in the 21st century, July 20–24
Liu K, Zhang Q, Chen J, Zhu ZQ, Zhang J (2011) Online multiparameter estimation of nonsalient-pole PM synchronous machines with temperature variation tracking. IEEE Trans Ind Electron 58(5):1776–1788
Liu Z-H, Zhang J, Zhou S-W, Li X-H, Liu K (2013) Coevolutionary particle swarm optimization using AIS and its application in multiparameter estimation of PMSM. IEEE Trans Cybern 43(6):1921–1935
Mohamed YA-RI, El-Saadany EF (2008) A current control scheme with an adaptive internal model for torque ripple minimization and robust current regulation in PMSM drive systems. IEEE Trans Energy Convers 23(1):92–100
Morimoto S, Sanada M, Takeda Y (2006) Mechanical sensorless drives of IPMSM with online parameter identification. IEEE Trans Ind Appl 42(5):1241–1248
Nahid-Mobarakeh B, Meibody-Tabar F, Sargos F-M (2004) Mechanical sensorless control of PMSM with online estimation of stator resistance. IEEE Trans Ind Appl 40(2):457–471
Nogueira Lima AM, Jacobina CB, de Souza Filho EB (1997) Nonlinear parameter estimation of steady-state induction machine models. IEEE Trans Ind Electron 44(3):390–397
Ozturk N, Yildiz AR, Kaya N, Ozturk F (2006) Neuro-genetic design optimization framework to support the integrated robust design optimization process in CE. Concurr Eng Res Appl 14(1):5–16
Qin AK, Suganthan PN (2005) Self-adaptive differential evolution algorithm for numerical optimization. In: Proceedings of the IEEE congress on evolutionary computation, vols 1–3, pp 1785–1791
Qin AK, Huang VL, Suganthan PN (2009) Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans Evol Comput 13(2):398–417
Rahman KM, Hiti S (2005) Identification of machine parameters of a synchronous motor. IEEE Trans Ind Appl 41(2):557–565
Raie A, Rashtchi V (2002) Accurate identification of parameters, in winding function model of induction motor, using genetic algorithm. In: Proceedings of the 41st SICE annual conference (SICE 2002), vol 4, pp 2430–2434
Rashed M, MacConnell PFA, Stronach AF, Acarnley P (2007) Sensorless indirect-rotor-field-orientation speed control of a permanent-magnet synchronous motor with stator-resistance estimation. IEEE Trans Ind Electron 54(3):1664–1675
Rice SO (1973) Efficient evaluation of integrals of analytic functions by the trapezoidal rule. Bell Syst Tech J 52(5):707–722
Schaible U, Szabados B (1999) Dynamic motor parameter identification for high speed flux weakening operation of brushless permanent magnet synchronous machines. IEEE Trans Energy Convers 14(3):486–492
Shi Y, Sun K, Huang L, Li Y (2012) Online identification of permanent magnet flux based on extended Kalman filter for IPMSM drive with position sensorless control. IEEE Trans Ind Electron 59(11):4169–4178
Tanabe R, Fukunaga AS (2014) Improving the search performance of SHADE using linear population size reduction. In: IEEE congress on evolutionary computation (CEC 2014), July 6–11, pp 1658–1665
Teo J (2006) Exploring dynamic self-adaptive populations in differential evolution. Soft Comput 10(8):673–686
Underwood SJ, Husain I (2010) Online parameter estimation and adaptive control of permanent-magnet synchronous machines. IEEE Trans Ind Electron 57(7):2435–2443
Valdenebro LR, Bim E (1999) A genetic algorithms approach for adaptive field oriented control of induction motor drives. In: Proceedings of the IEEE international electric machines and drives conference (IEMDC ’99), pp 643–645
Wang C, Liu YC, Zhao YT (2013a) Application of dynamic neighborhood small population particle swarm optimization for reconfiguration of shipboard power system. Eng Appl Artif Intell 26(4):1255–1262
Wang H, Rahnamayan S, Sun H, Omran MGH (2013b) Gaussian Bare-Bones differential evolution. IEEE Trans Cybern 43(2):634–647
Wang H, Sun H, Li C, Rahnamayan S, Pan JS (2013c) Diversity enhanced particle swarm optimization with neighborhood search. Inf Sci 223:119–135
Wang C, Liu YC, Zhao YT, Chen Y (2014) A hybrid topology scale-free Gaussian-dynamic particle swarm optimization algorithm applied to real power loss minimization. Eng Appl Artif Intell 32:63–75
Yildiz AR (2008) Optimal structural design of vehicle components using topology design and optimization. Mater Test 50(4):224–228
Yildiz AR (2013a) Comparison of evolutionary-based optimization algorithms for structural design optimization. Eng Appl Artif Intell 26(1):327–333
Yildiz AR (2013b) Cuckoo search algorithm for the selection of optimal machining parameters in milling operations. Int J Adv Manuf Technol 64(1–4):55–61
Yildiz AR (2013c) Hybrid Taguchi-differential evolution algorithm for optimization of multi-pass turning operations. Appl Soft Comput J 13(3):1433–1439
Yildiz AR (2013d) A new hybrid differential evolution algorithm for the selection of optimal machining parameters in milling operations. Appl Soft Comput J 13(3):1561–1566
Yildiz AR (2013e) Optimization of multi-pass turning operations using hybrid teaching learning-based approach. Int J Adv Manuf Technol 66(9–12):1319–1326
Yildiz AR, Saitou K (2011) Topology synthesis of multicomponent structural assemblies in continuum domains. J Mech Des Trans ASME 133 (1):788–796
Yildiz AR, Kaya N, Ozturk F, Alankus O (2004) Optimal design of vehicle components using topology design and optimisation. Int J Veh Des 34(4):387–398
Yildiz BS, Lekesiz H, Yildiz AR (2016a) Structural design of vehicle components using gravitational search and charged system search algorithms. Mater Test 58(1):79–81
Yildiz AR, Kurtulus E, Demirci E, Yildiz BS, Karagoz S (2016b) Optimization of thin-wall structures using hybrid gravitational search and Nelder-Mead algorithm. Mater Test 58(1):75–78
Zhan ZH, Zhang J, Li Y, Chung HSH (2009) Adaptive particle swarm optimization. IEEE Trans Syst Man Cybern Part B Cybern 39(6):1362–1381
Zhang JQ, Sanderson AC (2009) JADE: adaptive differential evolution with optional external archive. IEEE Trans Evol Comput 13(5):945–958
Zheng P, Zhao J, Liu R, Tong C, Wu Q (2010) Magnetic characteristics investigation of an axial-axial flux compound-structure PMSM used for HEVs. IEEE Trans Magn 46:2191–2194
Zhu ZQ, Zhu X, Sun PD, Howe D (2007) Estimation of winding resistance and PM flux-linkage in brushless ac machines by reduced-order extended Kalman filter. In: IEEE international conference on networking, sensing and control, pp 740–745
Acknowledgments
The authors would like to thank Natural Science Foundation of Liaoning Province, China, under Contract No. 2014025006; Education Department General Project of Liaoning Province, China, under Contract No. L2014209; Fundamental Research Funds for the Central Universities under Contract No. 3132016011 for financially supporting this research.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Ethical approval
This article does not contain any studies with human participants or animals performed by any of the authors.
Informed consent
Informed consent was obtained from all individual participants included in the study.
Additional information
Communicated by V. Loia.
Rights and permissions
About this article
Cite this article
Wang, C., Liu, Y., Liang, X. et al. Self-adaptive differential evolution algorithm with hybrid mutation operator for parameters identification of PMSM. Soft Comput 22, 1263–1285 (2018). https://doi.org/10.1007/s00500-016-2413-6
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00500-016-2413-6