Skip to main content
Log in

Recursive least-squares temporal difference learning for adaptive traffic signal control at intersection

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

This paper presents a new method to solve the scheduling problem of adaptive traffic signal control at intersection. The method involves recursive least-squares temporal difference (RLS-TD(λ)) learning that is integrated into approximate dynamic programming. The learning mechanism of RLS-TD(λ) is to make an adaptation of linear function approximation by updating its parameters based on environmental feedback. This study investigates the method implementation after modeling a traffic dynamic system at intersection in discrete time. In the model, different traffic control schemes regarding signal phase sequence are considered, especially the defined adaptive phase sequence (APS). By simulating traffic scenarios, RLS-TD(λ) is superior to TD(λ) for updating functional parameters in the approximation, and APS outperforms other conventional control schemes on reducing traffic delay. By comparing with other traffic signal control algorithms, the proposed algorithm yields satisfying results in terms of traffic delay and computation time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Khan SG, Herrmann G, Lewis FL, Pipe T, Melhuish C (2012) Reinforcement learning and optimal adaptive control: an overview and implementation examples. Annu Rev Control 36(1):42–59

    Article  Google Scholar 

  2. Sutton RS, Barto AG (1998) Reinforcement learning: an introduction. MIT Press, Cambridge

    MATH  Google Scholar 

  3. Xu X, Zuo L, Huang Z (2014) Reinforcement learning algorithms with function approximation: recent advances and applications. Inform Sci 261:1–31

    Article  MathSciNet  MATH  Google Scholar 

  4. Powell WB (2007) Approximate dynamic programming: solving the curses of dimensionality. Wiley, New York

    Book  MATH  Google Scholar 

  5. Wang FY, Zhang H, Liu D (2009) Adaptive dynamic programming: an introduction. IEEE Comput Intell M 4(2):39–47

    Article  Google Scholar 

  6. Werbos PJ (1992) Approximate dynamic programming for real-time control and neural modeling. Handbook of intelligent control: neural, fuzzy, and adaptive approaches 15:493–525

    Google Scholar 

  7. Cai C, Wong CK, Heydecker BG (2009) Adaptive traffic signal control using approximate dynamic programming. Transport Res Part C Emerg Technol 17(5):456–474

    Article  Google Scholar 

  8. Haijema R, van der Wal J (2008) An MDP decomposition approach for traffic control at isolated signalized intersections. Proba Eng Inform Sci 22(4):587–602

    Article  MathSciNet  MATH  Google Scholar 

  9. Yu XH, Recker WW (2006) Stochastic adaptive control model for traffic signal systems. Transp Res Part C Emerg Technol 14(4):263–282

    Article  Google Scholar 

  10. Baird L, Moore AW (1999) Gradient descent for general reinforcement learning. In: Advances in neural information processing systems, pp 968–974

  11. Tsitsiklis JN, Van Roy B (1997) An analysis of temporal-difference learning with function approximation. IEEE Trans Automat Contr 42(5):674–690

    Article  MathSciNet  MATH  Google Scholar 

  12. Xu X, He H, Hu D (2002) Efficient reinforcement learning using recursive least-squares methods. J Artif Intell Res 16(1):259–292

    Article  MathSciNet  MATH  Google Scholar 

  13. Ormoneit D, Sen Ś (2002) Kernel-based reinforcement learning. Mach Learn 49(2–3):161–178

    Article  MATH  Google Scholar 

  14. Bradtke SJ, Barto AG (1996) Linear least-squares algorithms for temporal difference learning. Mach Learn 22(1–3):33–57

    MATH  Google Scholar 

  15. Boyan JA (2002) Technical update: least-squares temporal difference learning. Mach Learn 49(2–3):233–246

    Article  MATH  Google Scholar 

  16. Hunt PB, Robertson DI, Bretherton RD, Winton RI (1981) SCOOT–a traffic responsive method of coordinating signals. Transport and Road Research Laboratory, Crowthorne, Technique Report

  17. Lowrie PR (1982) The Sydney coordinated adaptive traffic system-principles, methodology, algorithms. In: Proceddings of international conference on road traffic signalling

  18. Mladenovic MN, Stevanovic A, Kosonen I, Glavic D (2015) Adaptive traffic control systems: guidelines for development of functional requirements. mobil.TUM. Munich, Germany

  19. Gartner NH, Pooran FJ, Andrews CM (2001) Implementation of the OPAC adaptive control strategy in a traffic signal network. In: Proceedings of IEEE conference intelligent transportation systems, pp 195–200

  20. Henry J, Farges J, Tuffal J (1984) The PRODYN real time traffic algorithm. IFACIFIP-IFORS conference on control in transportation system. http://trid.trb.org/view.aspx?id=339694

  21. Mirchandani P, Head L (2001) A real-time traffic signal control system: architecture, algorithms, and analysis. Transp Res Part C Emerg Technol 9(6):415–432

    Article  Google Scholar 

  22. Heung TH, Ho TK, Fung YF (2005) Coordinated road-junction traffic control by dynamic programming. IEEE Trans Intell Transp 6(3):341–350

    Article  Google Scholar 

  23. Wu J, Abbas-Turki A, El Moudni A (2009) Discrete methods for urban intersection traffic controlling. In Proceedings of IEEE vehicular technology conference, pp 1–5

  24. Park B, Chang M (2002) Realizing benefits of adaptive signal control at an isolated intersection. Transport Res Rec 1811:115–121

    Article  Google Scholar 

  25. Abdulhai B, Pringle R, Karakoulas GJ (2003) Reinforcement learning for true adaptive traffic signal control. J Transp Eng-ASCE 129(3):278–285

    Article  Google Scholar 

  26. Lee J, Abdulhai B, Shalaby A, Chung EH (2005) Real-time optimization for adaptive traffic signal control using genetic algorithms. J Intell Transport S 9(3):111–122

    Article  MATH  Google Scholar 

  27. Kergaye C, Stevanovic A, Martin PT (2010) Comparative evaluation of adaptive traffic control system assessments through field and microsimulation. J Intell Transport S 14(2):109–124

    Article  Google Scholar 

  28. Li L, Lv Y, Wang FY (2016) Traffic signal timing via deep reinforcement learning. IEEE/CAA J Autom Sin 3(3):247–254

    Article  MathSciNet  Google Scholar 

  29. Araghi S, Khosravi A, Creighton D (2015) A review on computational intelligence methods for controlling traffic signal timing. Expert Syst Appl 42(3):1538–1550

    Article  Google Scholar 

  30. García-Nieto J, Alba E, Carolina Olivera A (2012) Swarm intelligence for traffic light scheduling: application to real urban areas. Eng Appl Artif Intell 25(2):274–283

    Article  Google Scholar 

  31. Srinivasan D, Choy MC, Cheu RL (2006) Neural networks for real-time traffic signal control. IEEE Trans Intell Transp 7(3):261–272

    Article  Google Scholar 

  32. Arel I, Liu C, Urbanik T, Kohls AG (2010) Reinforcement learning-based multi-agent system for network traffic signal control. IET Intell Transp Syst 4(2):128–135

    Article  Google Scholar 

  33. Bazzan ALC (2009) Opportunities for multiagent systems and multiagent reinforcement learning in traffic control. Auton Agent Multi-Agent Syst 18(3):342–375

    Article  Google Scholar 

  34. Box S, Waterson B (2013) An automated signalized junction controller that learns strategies by temporal difference reinforcement learning. Eng Appl Artif Intell 26(1):652–659

    Article  Google Scholar 

  35. Prashanth LA, Bhatnagar S (2011) Reinforcement learning with function approximation for traffic signal control. IEEE Trans Intell Transp 12(2):412–421

    Article  Google Scholar 

  36. El-Tantawy S, Abdulhai B, Abdelgawad H (2013) Multiagent reinforcement learning for integrated network of adaptive traffic signal controllers (MARLIN-ATSC): methodology and large-scale application on downtown Toronto. IEEE Trans Intell Transp 14(3):1140–1150

    Article  Google Scholar 

  37. Li T, Zhao D, Yi J (2008) Adaptive dynamic programming for multi-intersections traffic signal intelligent control. In: Proceedings of IEEE conference intelligent transportation systems, pp 286–291

  38. Zhao D, Hu Z, Xia Z, Alippi C, Zhu Y, Wang D (2014) Full-range adaptive cruise control based on supervised adaptive dynamic programming. Neurocomputing 125:57–67

    Article  Google Scholar 

  39. Huang YS, Weng YS, Zhou MC (2014) Modular design of urban traffic-light control systems based on synchronized timed Petri nets. IEEE Trans Intell Transp 15(2):530–539

    Article  Google Scholar 

  40. El-Tantawy S, Abdulhai B, Abdelgawad H (2014) Design of reinforcement learning parameters for seamless application of adaptive traffic signal control. J Intell Transp Syst 18(3):227–245

    Article  Google Scholar 

  41. Busoniu L, Babuska R, De Schutter B (2008) A comprehensive survey of multiagent reinforcement learning. IEEE Trans Syst Man Cybern C 38(2):156–172

    Article  Google Scholar 

  42. Bertsekas DP (1995) Dynamic programming and optimal control vol. 1 No 2. Athena Scientific, Belmont

  43. Gartner NH, Tarnoff PJ, Andrews CM (1991) Evaluation of optimized policies for adaptive control strategy. Transp Res Rec 1324:105–114

    Google Scholar 

  44. Yin B, Dridi M, El Moudni A (2015) Forward search algorithm based on dynamic programming for real-time adaptive traffic signal control. IET Intell Transp Syst 9(7):754–764

    Article  Google Scholar 

  45. Khamis MA, Gomaa W (2012) Enhanced multiagent multi-objective reinforcement learning for urban traffic light control. In: Proceedings of IEEE conference machine learning and applications, pp 586–591

  46. Khamis MA, Gomaa W (2014) Adaptive multi-objective reinforcement learning with hybrid exploration for traffic signal control based on cooperative multi-agent framework. Eng Appl Artif Intell 29:134–151

    Article  Google Scholar 

  47. Söderström T, Stoica P (2002) Instrumental variable methods for system identification. Circ Syst Signal Process 21(1):1–9

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biao Yin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix: Derivation of RLS-TD(λ) in M-step planning

Appendix: Derivation of RLS-TD(λ) in M-step planning

In M-step planning, the objective function Eq. (11) is modified as:

$$O(\theta_{t} ) = \frac{1}{t}\sum\limits_{i = 1}^{t} {\left( {\sum\limits_{k = i}^{i + M - 1} {\gamma^{k - i} } r_{k} - (\phi_{i} - \gamma^{M} \phi_{i + M} )^{\text{T}} \theta_{t} } \right)^{2} } .$$
(32)

According to related theories [14, 47], we can rewrite Eq. (12) by using \(\phi_{t}\) as the instrumental variable in LS-TD. That is,

$$\theta_{t} = \left( {\frac{1}{t}\sum\limits_{i = 1}^{t} {\phi_{i} (\phi_{i} - \gamma^{M} \phi_{i + M} )^{\text{T}} } } \right)^{ - 1} \left( {\frac{1}{t}\sum\limits_{i = 1}^{t} {\phi_{i} \sum\limits_{k = i}^{i + M - 1} {\gamma^{k - i} } r_{k} } } \right) .$$
(33)

In LS-TD(λ), \(\theta_{t}\) can be estimated as

$$\begin{aligned} \theta_{t} = \left( {\frac{1}{t}\sum\limits_{i = 1}^{t} {z_{i} (\phi_{i} - \gamma^{M} \phi_{i + M} )^{\text{T}} } } \right)^{ - 1} \left( {\frac{1}{t}\sum\limits_{i = 1}^{t} {z_{i} \sum\limits_{k = i}^{i + M - 1} {\gamma^{k - i} } r_{k} } } \right) \hfill \\ \;\;\;\; \approx \left( {\sum\limits_{i = 1}^{t} {z_{i} (\phi_{i} - \gamma^{M} \phi_{i + M} )^{\text{T}} } } \right)^{ - 1} \left( {\sum\limits_{i = 1}^{t} {z_{i} \sum\limits_{k = i}^{i + M - 1} {\gamma^{k - i} } r_{k} } } \right) \hfill \\ \end{aligned}$$
(34)

where using the eligibility vector \(z_{t}\) in Eq. (10) substitutes the variable \(\phi_{t}\). According to matrix inverse lemma and RLS-TD(λ) [12], the parameter vector \(\theta_{t}\) updated by RLS-TD(λ) in M-step planning (in Eqs. (27), (28), and (29)) can be guaranteed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, B., Dridi, M. & Moudni, A.E. Recursive least-squares temporal difference learning for adaptive traffic signal control at intersection. Neural Comput & Applic 31 (Suppl 2), 1013–1028 (2019). https://doi.org/10.1007/s00521-017-3066-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-017-3066-9

Keywords

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy