Skip to main content
Log in

Collaborative caching for efficient dissemination of personalized video streams in resource constrained environments

  • Regular Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The ever increasing deployment of broadband networks and simultaneous proliferation of low-cost video capturing and multimedia-enabled mobile devices such as smart cellular phones, netbook computers, and tablet computers have triggered a wave of novel mobile multimedia applications making video streaming on mobile devices increasingly popular and commonplace. Networked environments consisting of mobile devices tend to be highly heterogeneous in terms of client-side and system-wide resource constraints, clients’ queries for information, geospatial distribution, and dynamic trajectories of the mobile clients, and client-side and server-side privacy and security requirements. Invariably, the video streams need to be personalized to provide a resource-constrained mobile device with video content that is most relevant to the client’s request while simultaneously satisfying the client-side and system-wide resource constraints, privacy and security requirements and the constraints imposed by the geospatial distribution and dynamic trajectories of the mobile clients relative to the server(s). In this paper, we present the design and implementation of a distributed system, consisting of several geographically distributed video personalization servers and proxy caches, for efficient dissemination of personalized video in a resource-constrained mobile environment. With the objective of optimizing cache performance, a novel cache replacement policy and multi-stage client request aggregation strategy, both of which are specifically tailored for personalized video content, are proposed. A novel Latency-Biased Collaborative Caching (LBCC) protocol based on counting Bloom filters is designed for further enhancing the scalability and efficiency of disseminating personalized video content. The benefits and costs associated with collaborative caching for disseminating personalized video content to resource-constrained and geographically distributed clients are analyzed and experimentally verified. The impact of different levels of collaboration among the caches and the advantages of using multiple video personalization servers with varying degrees of mirrored content on the efficiency of personalized video delivery are also studied. Experimental results demonstrate that the proposed collaborative caching scheme, coupled with the proposed personalization-aware cache replacement and client request aggregation strategies, provides a means for efficient dissemination of personalized video streams in resource-constrained environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Akbar, M.D., Manning, E.G., Shoja, G.C., Khan, S.: Heuristic solutions for the multiple-choice multi-dimension Knapsack problem. Proceeding International Conference Computational Science, San Fransico, pp. 659–668 (2001)

  2. Bahn, H., Noh, S.H., Min, S.L., Koh, K.: Using full reference history for efficient document replacement in Web caches. Proceeding of the 2nd USENIX Symposium Internet Technologies and Systems, Boulder, 11–14 Oct (1999)

  3. Bartoli, A., Dalal, N., Horaud, R.: Motion panoramas. Comput. Anim. Virtual Worlds. 15, 501–517 (2004)

    Article  Google Scholar 

  4. Bhandarkar, S.M., Warke, Y.S., Khombadia, A.A.: Integrated parsing of compressed video. Lecture Notes in Computer Science, 1614, 269–276 (1999)

  5. Bonomi, F., Mitzenmacher, M., Panigrahy, R., Singh, S., Varghese, G.: An improved construction for counting Bloom filters. In: Azar, Y., Erlebach, T. (eds.) Proceeding of European Symposium on Algorithms (ESA 2006), Zurich, Springer LNCS 4168, pp. 684–695 (2006)

  6. Buyya, R.C., Pathan, M., Vakali, A. (eds): Content Delivery Networks. Springer, New York (2008)

    Google Scholar 

  7. Chankhunthod, A., Danzig, P., Neerdaels, C., Schwartz, M., Worell, K.: A hierarchical internet object cache. Proceeding of the 1996 USENIX Technical Conference, San Diego, 22–26 Jan (1996)

  8. Chattopadhyay, S., Luo, X., Bhandarkar, S.M., Li, K.: FMOE-MR: content-driven multi-resolution MPEG-4 fine-grained scalable layered video encoding. Proceeding of the ACM Multimedia Computing and Networking Conference (ACM MMCN 2007), San Jose, Jan 2007, pp. 650404–11 (2007)

  9. Chattopadhyay, S., Bhandarkar, S.M., Li, K.: Ligne-Claire video encoding for power constrained mobile environments. Proceeding of the ACM Conference on Multimedia, Augsburg, Sept 2007, pp. 1036–1045 (2007)

  10. Chattopadhyay, S., Ramaswamy, L., Bhandarkar, S.M.: A framework for encoding and caching of video for quality adaptive progressive download. Proceeding of the ACM Conference on Multimedia, Augsburg, Sept 2007, pp. 775–778 (2007)

  11. Chattopadhyay, S., Bhandarkar, S.M.: Hybrid layered video encoding and caching for resource constrained environments. J. Vis. Commun. Image Represent. 19(8), 573–588 (2008)

    Article  Google Scholar 

  12. Chen, M.J., Chu, M.C., Pan, C.W.: Efficient motion estimation algorithm for reduced frame-rate video transcoder. IEEE Trans. Circuits Syst. Video Technol. 12(4), 269–275 (2002)

    Article  Google Scholar 

  13. Cherkasova, L.: Improving WWW proxies performance with greedy-dual-size-frequency caching policy, HP Laboratories Report No. HPL-98-69R1, April (1998)

  14. Eberhard, M., Szkaliczki, T., Hellwagner, H., Szobonya, L., Timmerer, C.: Knapsack problem-based piece-picking algorithms for layered content in peer-to-peer networks. Proceeding of the ACM Workshop AVSTP2P, 29 Oct, Florence (2010)

  15. Eickeler, S., Muller, S.: Content-based video indexing of TV broadcast news using Hidden Markov models. Proceeding of the IEEE International Conference on Acoustics, Speech and Signal Processing, March 1999, pp. 2997–3000 (1999)

  16. Eleftheriadis, A., Batra, P.: Dynamic rate shaping of compressed digital video. IEEE Trans. Multimed. 8(2), 297–314 (2006)

    Article  Google Scholar 

  17. Eugene-Ng, T.S., Zhang, H.: Towards global network positioning, extended abstract. ACM SIGCOMM Internet Measurement Workshop 2001, San Francisco (2001)

  18. Eugene-Ng, T.S., Zhang, H.: Predicting internet network distance with coordinates-based approaches. Proceeding of the INFOCOM 2002, New York (2002)

  19. Fan, L., Cao, P., Almeida, J., Broder, A.: Summary cache: a scalable wide-area web cache sharing protocol. Proceeding of the ACM SIGCOMM, Vancouver, 31 Aug–Sept 4 (1998)

  20. Fan, L., Cao, P., Almeida, J., Broder, A.Z.: Summary cache: a scalable wide-area web cache sharing protocol. IEEE/ACM Trans. Netw. 8(3), 281–293 (2000)

    Article  Google Scholar 

  21. Fellbaum, C. (eds): WordNet—an Electronic Lexical Database. The MIT Press, Cambridge (1998)

    MATH  Google Scholar 

  22. Flickner, M., Sawhney, H., Niblack, W., Ashley, J., Huang, Q., Dom, B., Gorkani, M., Hafner, J., Lee, D., Petkovic, D., Steele, D., Yanker, P.: Query by image and video content: the QBIC system. IEEE Comput. Mag. pp. 23–32 (1995)

  23. Forney, G.D.: The Viterbi algorithm. Proc. IEEE 61(3), 268–278 (1973)

    Article  MathSciNet  Google Scholar 

  24. Geusebroek, J.-M., Smeulders, A.W.M., VanDe Weijer, J.: Fast anisotropic Gauss filtering. IEEE Trans. Image Process. 12(8), 938–943 (2003)

    Article  MathSciNet  Google Scholar 

  25. Hernandez, R.P., Nikitas, N.J.: A new Heuristic for solving the multichoice multidimensional Knapsack problem. IEEE Trans. Syst. Man Cybern. Part A 35(5), 708–717 (2005)

    Article  Google Scholar 

  26. Huang, J., Liu, Z., Wang, Y.: Joint scene classification and segmentation based on Hidden Markov model. IEEE Trans. Multimed. 7(3), 538–550 (2005)

    Article  Google Scholar 

  27. Internet Cache Protocol: protocol specification, Version 2 (1997)

  28. Irani, M., Hsu, S., Anandan, P.: Mosaic based video compression. Proc. SPIE Conf. Electron. Imaging Digit. Video Compression: Algorithms and Technologies 2419, 242–253 (1995)

    Google Scholar 

  29. Irani, M., Anandan, P., Bergen, J., Kumar, R., Hsu, S.: Efficient representations of video sequences and their applications. Signal Processing and Image Communication, Special issue on Image and Video Semantics: Processing, Analysis, and Application vol. 8(4), pp. 327–351 (1996)

  30. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. 31(3), 264–323 (1999)

    Article  Google Scholar 

  31. Jin, S., Bestavros, A.: Popularity-aware Greedy dual-size web proxy caching algorithms. In: Proceeding of the 20th IEEE International Conference Distributed Computing Systems (ICDCS), Taipei, pp. 254–261 (2000)

  32. Kelly, T., Chan, Y.M., Jamin, S.: Differential quality-of-service and aggregate user value. In: Proceeding of the Web Caching Workshop (WCW 1999), San Diego, 31 March–2 April 1999

  33. Leacock, C., Chodorow, M.: Combining local context and WordNet similarity for word sense identification. In: Fellbaum, C. (eds) WordNet: an Electronic Lexical Database, pp. 265–283. MIT Press, Cambridge (1998)

    Google Scholar 

  34. Li, C.S., Mohan, R., Smith, J.R.: Multimedia content description in the InfoPyramid. In: Proceeding of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Special session on Signal Processing in Modern Multimedia Standards, Seattle, vol. 6, pp. 3789–3792 (1998)

  35. Liu, Y., Zhang, S., Xu, S., Zhang, Y.: Research on H.264/SVC compressed video. In: Proceeding of the 4th IEEE International Conference Computer Science and Education (ICCSE), Nanning, pp. 327–332, 25–28 July 2009

  36. Merialdo, B., Lee, K.T., Luparello, D., Roudaire, J.: Automatic construction of personalized TV news programs. In: Proceeding of the ACM Conference on Multimedia, Orlando, pp. 323–331 (1999)

  37. Michel, S., Nguyen, K., Rosenstein, A., Zhang, L., Floyd, S., Jacobson, V.: Adaptive web caching: towards a new global caching architecture. Comput. Netw. ISDN Syst. 30(22-23), 2169–2177 (1998)

    Article  Google Scholar 

  38. Nakajima, Y., Hori, H., Kanoh, T.: Rate conversion of MPEG coded video by requantization process. In: Proceeding of the IEEE International Conference Image Processing, Washington, DC, pp. 408–411 (1995)

  39. Niclaussem, N., Liu, Z., Nain, P.: A new and efficient caching policy for world wide web. In: Proceeding of the Workshop on Internet Server Performance (WISP), Madison, 23 June 1998

  40. Parate, P., Ramaswamy, L., Bhandarkar, S.M., Chattopadhyay, S., Devulapally, H.K.: Efficient dissemination of personalized video content for mobile environments. In: Proceedings of the 5th International Conference Collaborative Computing (CollaborateCom 2009), Washington, DC, 11–14 Nov 2009

  41. Rabiner, L.R.: A tutorial on Hidden Markov models and selected applications in speech recognition. Proc. IEEE 77(2), 257–286 (1989)

    Article  Google Scholar 

  42. Ramakrishna, M.V.: Practical performance of Bloom filters and parallel free-text searching. Comm. ACM 32(10), 1237–1239 (1989)

    Article  Google Scholar 

  43. Ramaswamy, L., Liu, L.: An expiration age-based document placement scheme for cooperative web caching. IEEE Trans. Knowl. Data Eng. 16(5), 585–600 (2004)

    Article  Google Scholar 

  44. Ramaswamy, L., Liu, L., Zhang, J.: Efficient formation of edge cache groups for dynamic content delivery. In: Proceedings of the International Conference on Distributed Computing Systems (ICDCS 2006), Lisboa, 4–7 July 2006

  45. Ramaswamy, L., Liu, L., Iyengar, A.: Scalable delivery of dynamic content using a cooperative edge cache grid. IEEE Trans. Knowl. Data Eng. 19(5), 614–630 (2007)

    Article  Google Scholar 

  46. Sikora, T.: Trends and perspectives in image and video coding. Proc. IEEE 93(1), 6–17 (2005)

    Article  MathSciNet  Google Scholar 

  47. Sun, H., Kwok, W., Zdepski, J.: Architectures for MPEG compressed bitstream scaling. IEEE Trans. Circuits Syst. Video Technol. 6, 191–199 (1996)

    Article  Google Scholar 

  48. Tamura, H., Mori, S., Yamawaki, T.: Textural features corresponding to visual perception. IEEE Trans. Syst. Man Cybern. 8, 460–472 (1978)

    Article  Google Scholar 

  49. Tewari, R., Dahlin, M., Vin, H., Kay, J.: Beyond hierarchies: design considerations for distributed caching on the internet. In: Proceedings of the International Conference on Distributed Computing Systems (ICDCS 1999), Austin, 31 May–4 June 1999

  50. Thaler, D., Ravishankar, C.: Using name-based mappings to increase hit rates. IEEE/ACM Trans. Netw. 6(1), 1–14 (1998)

    Article  Google Scholar 

  51. Tseng, B.L., Smith, J.R.: Hierarchical video summarization based on context clustering. Proc. SPIE 5242, 14–25 (2003)

    Article  Google Scholar 

  52. Tseng, B.L., Lin, C.Y., Smith, J.R.: Video personalization and summarization system for usage environment. J. Vis. Commun. Image Represent. 15, 370–392 (2004)

    Article  Google Scholar 

  53. Valloppillil, V., Ross, K.W.: Cache array routing protocol v1.0. Internet Draft (1997)

  54. Vanderbei, R.J.: Linear Programming: Foundations and Extensions. Kluwer Academic Publishers, Boston (1997)

    Google Scholar 

  55. Wei, Y., Wang, H., Bhandarkar, S.M., Li, K.: Parallel algorithms for motion panorama construction. In: Proceedings of the ICPP Workshop on Parallel and Distributed Multimedia, Columbus, pp. 82–92 (2006)

  56. Wei, Y., Bhandarkar, S.M., Li, K.: Video personalization in resource-constrained multimedia environments. In: Proceedings of the ACM Conference Multimedia, Augsburg, pp. 902–911 (2007)

  57. Wei, Y., Bhandarkar, S.M., Li, K.: Semantics-based video indexing using a stochastic modeling approach. In: Proceedings of the IEEE International Conference on Image Processing (ICIP 2007), San Antonio, vol. IV, pp. 313–316 (2007)

  58. Wei, Y., Bhandarkar, S.M., Li, K.: Client-centered multimedia content adaptation. ACM Trans. Multimed. Comput. Commun. Appl. (ACM TOMCCAP) 5(3), 22:1–22:26 (2009)

    Google Scholar 

  59. Wheeler, E.S.: Zipf’s law and why it works everywhere. Glottometrics 4, 45–48 (2002)

    Google Scholar 

  60. Wu, K.-L., Yu, P.S.: Load balancing and hot spot relief for hash routing among a collection of proxy caches. In: Proceedings of the International Conference on Distributed Computing Systems (ICDCS 1999), Austin, 31 May–4 June 1999

  61. Zhu, W., Yang, K., Beacken, M.: CIF-to-QCIF video bitstream down conversion in the DCT domain. Bell Labs Tech. J. 3(3), 21–29 (1998)

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the anonymous reviewers for their insightful comments and helpful suggestions which greatly improved the paper. The authors also wish to thank Mr. Anirban Mukhopadhyay for his assistance in reformatting some of the graphs in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suchendra M. Bhandarkar.

Additional information

Communicated by B. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhandarkar, S.M., Ramaswamy, L. & Devulapally, H.K. Collaborative caching for efficient dissemination of personalized video streams in resource constrained environments. Multimedia Systems 20, 1–23 (2014). https://doi.org/10.1007/s00530-012-0300-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00530-012-0300-2

Keywords

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy