Skip to main content

Advertisement

Log in

Gmd: Gaussian mixture descriptor for pair matching of 3D fragments

  • Regular Paper
  • Published:
Multimedia Systems Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In the automatic reassembly of fragments acquired using laser scanners to reconstruct objects, a crucial step is the matching of fractured surfaces. In this paper, we propose a novel local descriptor that uses the Gaussian Mixture Model (GMM) to fit the distribution of points, allowing for the description and matching of fractured surfaces of fragments. Our method involves dividing a local surface patch into concave and convex regions for estimating the k value of GMM. Then the final Gaussian Mixture Descriptor (GMD) of the fractured surface is formed by merging the regional GMDs. To measure the similarities between GMDs for determining adjacent fragments, we employ the \(L_2\) distance and align the fragments using Random Sample Consensus (RANSAC) and Iterative Closest Point (ICP). The extensive experiments on real-scanned public datasets and Terracotta datasets demonstrate the effectiveness of our approach; furthermore, the comparisons with several existing methods also validate the advantage of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

This study utilized two datasets: the publicly available Geometric Fracture dataset, accessible online at https://borealisdata.ca/dataset.xhtml?persistentId=doi:10.5683/SP3/LZNPKB, and a dataset created by the authors. The Geometric Fracture dataset can be accessed online, while the authors’ dataset is not publicly available due to privacy and copyright reasons. Interested individuals can contact the authors for access to the dataset.

References

  1. Di Angelo, L., Di Stefano, P., Guardiani, E.: A review of computer-based methods for classification and reconstruction of 3d high-density scanned archaeological pottery. J. Cult. Herit. 56, 10–24 (2022). https://doi.org/10.1016/j.culher.2022.05.001

    Article  Google Scholar 

  2. Li, Q., Geng, G., Zhou, M.: Pairwise matching for 3d fragment reassembly based on boundary curves and concave-convex patches. IEEE Access 8, 6153–6161 (2020). https://doi.org/10.1109/ACCESS.2019.2961391

    Article  Google Scholar 

  3. Son, T.-G., Lee, J., Lim, J., Lee, K.: Reassembly of fractured objects using surface signature. Vis. Comput. 34, 1371–1381 (2017)

    Article  Google Scholar 

  4. Wang, H., Zang, Y., Liang, F., Dong, Z., Fan, H., Yang, B.: A probabilistic method for fractured cultural relics automatic reassembly. J. Comput. Cult. Herit. (2021). https://doi.org/10.1145/3417711

    Article  Google Scholar 

  5. Rusu, R.B., Blodow, N., Beetz, M.: Fast point feature histograms (fpfh) for 3d registration. In: 2009 IEEE International Conference on Robotics and Automation, pp. 3212–3217 (2009). IEEE

  6. Salti, S., Tombari, F., Stefano, L.D.: Shot: unique signatures of histograms for surface and texture description. Comput. Vis. Image Underst, 125(AUG.), 251–264 (2014)

    Article  Google Scholar 

  7. Assfalg, J., Bertini, M., Del Bimbo, A., Pala, P.: Content-based retrieval of 3-d objects using spin image signatures. IEEE Trans. Multimed. 9(3), 589–599 (2007)

    Article  Google Scholar 

  8. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the em algorithm. J. R. Stat. Soc. Ser. B (Methodol.) 39(1), 1–22 (1977)

    Article  MathSciNet  Google Scholar 

  9. Fan, J., Yang, J., Ai, D., Xia, L., Zhao, Y., Gao, X., Wang, Y.: Convex hull indexed gaussian mixture model (ch-gmm) for 3d point set registration. Pattern Recogn. 59, 126–141 (2016). https://doi.org/10.1016/j.patcog.2016.02.023. (Compositional Models and Structured Learning for Visual Recognition)

    Article  Google Scholar 

  10. Jian, B., Vemuri, B.C.: Robust point set registration using gaussian mixture models. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1633–1645 (2011). https://doi.org/10.1109/TPAMI.2010.223

    Article  Google Scholar 

  11. Liu, W., Wu, H., Chirikjian, G.S.: Lsg-cpd: Coherent point drift with local surface geometry for point cloud registration. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 15293–15302 (2021)

  12. Qu, G., Lee, W.H.: Point set registration based on improved KL divergence. Sci. Program. 2021, 1207569 (2021)

    Google Scholar 

  13. Yang, G., Li, R., Liu, Y., Wang, J.: A robust nonrigid point set registration framework based on global and intrinsic topological constraints. Vis. Comput. 38(2), 603–623 (2022)

    Article  Google Scholar 

  14. Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91 (2004). https://doi.org/10.1023/B:VISI.0000029664.99615.94

    Article  Google Scholar 

  15. Embretson, S.E., Reise, S.P.: Item response theory for psychologists (2000). https://doi.org/10.4324/9781410605269

  16. Yang, H., Shi, J., Carlone, L.: TEASER: fast and certifiable point cloud registration. IEEE Trans. Robot. 37(2), 314–333 (2020). https://doi.org/10.1109/TRO.2020.3033695

    Article  Google Scholar 

  17. Yan, L., Wei, P., Xie, H., Dai, J., Wu, H., Huang, M.: A new outlier removal strategy based on reliability of correspondence graph for fast point cloud registration (2022). http://arxiv.org/abs/2205.07404

  18. Pan, X., Zheng, Y., Jeon, B.: Robust segmentation based on salient region detection coupled gaussian mixture model. Information (2022). https://doi.org/10.3390/info13020098

    Article  Google Scholar 

  19. Mahajan, R., Padha, D.: Detection of change in body motion with background construction and silhouette orientation: Background subtraction with gmm. Int. J. Inform. Retrieval Res. (IJIRR) 12(2), 1–19 (2022)

    Article  Google Scholar 

  20. Avila, A.R., O’Shaughnessy, D., Falk, T.H.: Automatic speaker verification from affective speech using gaussian mixture model based estimation of neutral speech characteristics. Speech Commun. 132, 21–31 (2021). https://doi.org/10.1016/j.specom.2021.05.009

    Article  Google Scholar 

  21. Zhang, K., Yu, W., Manhein, M., Waggenspack, W.N., Li, X.: 3d fragment reassembly using integrated template guidance and fracture-region matching. 2015 IEEE International Conference on Computer Vision (ICCV), 2138–2146 (2015)

  22. Hong, J.H., Kim, Y.M., Wi, K.-C., Kim, J.: Potsac: A robust axis estimator for axially symmetric pot fragments. In: 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), pp. 1421–1428 (2019). https://doi.org/10.1109/ICCVW.2019.00179

  23. Son, K., Almeida, E.B., Cooper, D.B.: Axially symmetric 3d pots configuration system using axis of symmetry and break curve. In: Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. CVPR ’13, pp. 257–264. IEEE Computer Society, USA (2013). https://doi.org/10.1109/CVPR.2013.40

  24. Wang, W., Di, H., Song, L.: Reconstructing 3d contour models of general scenes from rgb-d sequences. In: International Conference on Multimedia Modeling, pp. 158–170 (2022). Springer

  25. Tian, Y., Gao, W., Liu, X., Chen, S., Mo, B.: The research on rejoining of the oracle bone rubbings based on curve matching. ACM Trans. Asian Low-Resour. Lang. Inf. Process. (2021). https://doi.org/10.1145/3460393

    Article  Google Scholar 

  26. Zhang, Y., Li, K., Chen, X., Zhang, S., Geng, G.: A multi feature fusion method for reassembly of 3d cultural heritage artifacts. J. Cult. Herit. 33, 191–200 (2018). https://doi.org/10.1016/j.culher.2018.03.001

    Article  Google Scholar 

  27. Tsiafaki, D., Koutsoudis, A., Arnaoutoglou, F., Michailidou, N.: Virtual reassembly and completion of a fragmentary drinking vessel. Virt. Archaeol. Rev. 7, 67–76 (2016)

    Article  Google Scholar 

  28. Sizikova, E., Funkhouser, T.: Wall painting reconstruction using a genetic algorithm. J. Comput. Cult. Herit. 11, 1–17 (2017). https://doi.org/10.1145/3084547

    Article  Google Scholar 

  29. Savelonas, M.A., Andreadis, A., Papaioannou, G., Mavridis, P.: Exploiting unbroken surface congruity for the acceleration of fragment reassembly. In: Eurographics Workshop on Graphics and Cultural Heritage (2017)

  30. Wu, M., Wang, J.: Reassembling fractured sand particles using fracture-region matching algorithm. Powder Technol. 338, 55–66 (2018). https://doi.org/10.1016/j.powtec.2018.06.045

    Article  Google Scholar 

  31. Cakir, O., Nabivev, V.: A region alignment and matching method for fractured object reassembly. In: 2021 6th International Conference on Computer Science and Engineering (UBMK), pp. 528–532 (2021). https://doi.org/10.1109/UBMK52708.2021.9559005

  32. Paulano-Godino, F., Jiménez-Delgado, J.J.: Identification of fracture zones and its application in automatic bone fracture reduction. Comput. Methods Programs Biomed. 141, 93–104 (2017). https://doi.org/10.1016/j.cmpb.2016.12.014

    Article  Google Scholar 

  33. Villegas-Suarez, A.M., Lopez, C., Sipiran, I.: Matchmakernet: Enabling fragment matching for cultural heritage analysis. In: 2023 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), pp. 1624–1633 (2023). https://doi.org/10.1109/ICCVW60793.2023.00178

  34. Chen, Y.-C., Li, H., Turpin, D., Jacobson, A., Garg, A.: Neural shape mating: self-supervised object assembly with adversarial shape priors. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12714–12723 (2022). https://doi.org/10.48550/arXiv.2205.14886

  35. Sellán, S., Chen, Y.-C., Wu, Z., Garg, A., Jacobson, A.: Breaking bad: a dataset for geometric fracture and reassembly. (2022). https://doi.org/10.48550/arXiv.2210.11463

  36. Rasmussen, C.: The infinite gaussian mixture model. In: Solla, S., Leen, T., Müller, K. (eds.) Advances in Neural Information Processing Systems, vol. 12. MIT Press, (1999). https://proceedings.neurips.cc/paper/1999/file/97d98119037c5b8a9663cb21fb8ebf47-Paper.pdf. Accessed Mar 2022

  37. Huang, Q.-X., Flöry, S., Gelfand, N., Hofer, M., Pottmann, H.: Reassembling fractured objects by geometric matching. ACM Trans. Graph. 25(3), 569–578 (2006). https://doi.org/10.1145/1141911.1141925

    Article  Google Scholar 

  38. Tombari, F., Salti, S., Stefano, L.D.: Unique Signatures of Histograms for Local Surface Description. Springer-Verlag (2010)

    Book  Google Scholar 

  39. Pelleg, D., Moore, A.: X-means: extending k-means with efficient estimation of the number of clusters. In: Proceedings of the ICML, pp. 727–734 (2000)

  40. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM (1987). https://doi.org/10.1016/B978-0-08-051581-6.50070-2

    Article  Google Scholar 

  41. Besl, P.J., McKay, N.D.: A method for registration of 3-d shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14, 239–256 (1992)

    Article  Google Scholar 

  42. Huang, Q.-X., Flöry, S., Gelfand, N., Hofer, M., Pottmann, H.: Reassembling fractured objects by geometric matching. ACM Trans. Graph. 25(3), 569–578 (2006). https://doi.org/10.1145/1141911.1141925

    Article  Google Scholar 

  43. ElNaghy, H., Dorst, L.: Pairwise alignment of archaeological fragments through morphological characterization of fracture surfaces. Int. J. Comput. Vis. 130(9), 2184–2204 (2022). https://doi.org/10.1007/s11263-022-01635-3

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all the editors and reviewers for their valuable comments and the Institute of Visualization of Northwest University of China for providing the models of Terracotta fragments.

Funding

This work was supported by the Shaanxi Science and Technology Association Youth Talent Support Program[20230115], National Natural Science Foundation of China (NSFC) [61802311].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuhe Zhang or Shunli Zhang.

Ethics declarations

Conflict of interest

The authors declare no Conflict of interest.

Additional information

Communicated by Yongdong Zhang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (pdf 1186 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, M., Shi, Z., Zhou, X. et al. Gmd: Gaussian mixture descriptor for pair matching of 3D fragments. Multimedia Systems 30, 326 (2024). https://doi.org/10.1007/s00530-024-01519-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00530-024-01519-1

Keywords

Navigation

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy