Abstract
In the automatic reassembly of fragments acquired using laser scanners to reconstruct objects, a crucial step is the matching of fractured surfaces. In this paper, we propose a novel local descriptor that uses the Gaussian Mixture Model (GMM) to fit the distribution of points, allowing for the description and matching of fractured surfaces of fragments. Our method involves dividing a local surface patch into concave and convex regions for estimating the k value of GMM. Then the final Gaussian Mixture Descriptor (GMD) of the fractured surface is formed by merging the regional GMDs. To measure the similarities between GMDs for determining adjacent fragments, we employ the \(L_2\) distance and align the fragments using Random Sample Consensus (RANSAC) and Iterative Closest Point (ICP). The extensive experiments on real-scanned public datasets and Terracotta datasets demonstrate the effectiveness of our approach; furthermore, the comparisons with several existing methods also validate the advantage of the proposed method.









Similar content being viewed by others
Data availability
This study utilized two datasets: the publicly available Geometric Fracture dataset, accessible online at https://borealisdata.ca/dataset.xhtml?persistentId=doi:10.5683/SP3/LZNPKB, and a dataset created by the authors. The Geometric Fracture dataset can be accessed online, while the authors’ dataset is not publicly available due to privacy and copyright reasons. Interested individuals can contact the authors for access to the dataset.
References
Di Angelo, L., Di Stefano, P., Guardiani, E.: A review of computer-based methods for classification and reconstruction of 3d high-density scanned archaeological pottery. J. Cult. Herit. 56, 10–24 (2022). https://doi.org/10.1016/j.culher.2022.05.001
Li, Q., Geng, G., Zhou, M.: Pairwise matching for 3d fragment reassembly based on boundary curves and concave-convex patches. IEEE Access 8, 6153–6161 (2020). https://doi.org/10.1109/ACCESS.2019.2961391
Son, T.-G., Lee, J., Lim, J., Lee, K.: Reassembly of fractured objects using surface signature. Vis. Comput. 34, 1371–1381 (2017)
Wang, H., Zang, Y., Liang, F., Dong, Z., Fan, H., Yang, B.: A probabilistic method for fractured cultural relics automatic reassembly. J. Comput. Cult. Herit. (2021). https://doi.org/10.1145/3417711
Rusu, R.B., Blodow, N., Beetz, M.: Fast point feature histograms (fpfh) for 3d registration. In: 2009 IEEE International Conference on Robotics and Automation, pp. 3212–3217 (2009). IEEE
Salti, S., Tombari, F., Stefano, L.D.: Shot: unique signatures of histograms for surface and texture description. Comput. Vis. Image Underst, 125(AUG.), 251–264 (2014)
Assfalg, J., Bertini, M., Del Bimbo, A., Pala, P.: Content-based retrieval of 3-d objects using spin image signatures. IEEE Trans. Multimed. 9(3), 589–599 (2007)
Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the em algorithm. J. R. Stat. Soc. Ser. B (Methodol.) 39(1), 1–22 (1977)
Fan, J., Yang, J., Ai, D., Xia, L., Zhao, Y., Gao, X., Wang, Y.: Convex hull indexed gaussian mixture model (ch-gmm) for 3d point set registration. Pattern Recogn. 59, 126–141 (2016). https://doi.org/10.1016/j.patcog.2016.02.023. (Compositional Models and Structured Learning for Visual Recognition)
Jian, B., Vemuri, B.C.: Robust point set registration using gaussian mixture models. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1633–1645 (2011). https://doi.org/10.1109/TPAMI.2010.223
Liu, W., Wu, H., Chirikjian, G.S.: Lsg-cpd: Coherent point drift with local surface geometry for point cloud registration. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 15293–15302 (2021)
Qu, G., Lee, W.H.: Point set registration based on improved KL divergence. Sci. Program. 2021, 1207569 (2021)
Yang, G., Li, R., Liu, Y., Wang, J.: A robust nonrigid point set registration framework based on global and intrinsic topological constraints. Vis. Comput. 38(2), 603–623 (2022)
Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91 (2004). https://doi.org/10.1023/B:VISI.0000029664.99615.94
Embretson, S.E., Reise, S.P.: Item response theory for psychologists (2000). https://doi.org/10.4324/9781410605269
Yang, H., Shi, J., Carlone, L.: TEASER: fast and certifiable point cloud registration. IEEE Trans. Robot. 37(2), 314–333 (2020). https://doi.org/10.1109/TRO.2020.3033695
Yan, L., Wei, P., Xie, H., Dai, J., Wu, H., Huang, M.: A new outlier removal strategy based on reliability of correspondence graph for fast point cloud registration (2022). http://arxiv.org/abs/2205.07404
Pan, X., Zheng, Y., Jeon, B.: Robust segmentation based on salient region detection coupled gaussian mixture model. Information (2022). https://doi.org/10.3390/info13020098
Mahajan, R., Padha, D.: Detection of change in body motion with background construction and silhouette orientation: Background subtraction with gmm. Int. J. Inform. Retrieval Res. (IJIRR) 12(2), 1–19 (2022)
Avila, A.R., O’Shaughnessy, D., Falk, T.H.: Automatic speaker verification from affective speech using gaussian mixture model based estimation of neutral speech characteristics. Speech Commun. 132, 21–31 (2021). https://doi.org/10.1016/j.specom.2021.05.009
Zhang, K., Yu, W., Manhein, M., Waggenspack, W.N., Li, X.: 3d fragment reassembly using integrated template guidance and fracture-region matching. 2015 IEEE International Conference on Computer Vision (ICCV), 2138–2146 (2015)
Hong, J.H., Kim, Y.M., Wi, K.-C., Kim, J.: Potsac: A robust axis estimator for axially symmetric pot fragments. In: 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), pp. 1421–1428 (2019). https://doi.org/10.1109/ICCVW.2019.00179
Son, K., Almeida, E.B., Cooper, D.B.: Axially symmetric 3d pots configuration system using axis of symmetry and break curve. In: Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. CVPR ’13, pp. 257–264. IEEE Computer Society, USA (2013). https://doi.org/10.1109/CVPR.2013.40
Wang, W., Di, H., Song, L.: Reconstructing 3d contour models of general scenes from rgb-d sequences. In: International Conference on Multimedia Modeling, pp. 158–170 (2022). Springer
Tian, Y., Gao, W., Liu, X., Chen, S., Mo, B.: The research on rejoining of the oracle bone rubbings based on curve matching. ACM Trans. Asian Low-Resour. Lang. Inf. Process. (2021). https://doi.org/10.1145/3460393
Zhang, Y., Li, K., Chen, X., Zhang, S., Geng, G.: A multi feature fusion method for reassembly of 3d cultural heritage artifacts. J. Cult. Herit. 33, 191–200 (2018). https://doi.org/10.1016/j.culher.2018.03.001
Tsiafaki, D., Koutsoudis, A., Arnaoutoglou, F., Michailidou, N.: Virtual reassembly and completion of a fragmentary drinking vessel. Virt. Archaeol. Rev. 7, 67–76 (2016)
Sizikova, E., Funkhouser, T.: Wall painting reconstruction using a genetic algorithm. J. Comput. Cult. Herit. 11, 1–17 (2017). https://doi.org/10.1145/3084547
Savelonas, M.A., Andreadis, A., Papaioannou, G., Mavridis, P.: Exploiting unbroken surface congruity for the acceleration of fragment reassembly. In: Eurographics Workshop on Graphics and Cultural Heritage (2017)
Wu, M., Wang, J.: Reassembling fractured sand particles using fracture-region matching algorithm. Powder Technol. 338, 55–66 (2018). https://doi.org/10.1016/j.powtec.2018.06.045
Cakir, O., Nabivev, V.: A region alignment and matching method for fractured object reassembly. In: 2021 6th International Conference on Computer Science and Engineering (UBMK), pp. 528–532 (2021). https://doi.org/10.1109/UBMK52708.2021.9559005
Paulano-Godino, F., Jiménez-Delgado, J.J.: Identification of fracture zones and its application in automatic bone fracture reduction. Comput. Methods Programs Biomed. 141, 93–104 (2017). https://doi.org/10.1016/j.cmpb.2016.12.014
Villegas-Suarez, A.M., Lopez, C., Sipiran, I.: Matchmakernet: Enabling fragment matching for cultural heritage analysis. In: 2023 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), pp. 1624–1633 (2023). https://doi.org/10.1109/ICCVW60793.2023.00178
Chen, Y.-C., Li, H., Turpin, D., Jacobson, A., Garg, A.: Neural shape mating: self-supervised object assembly with adversarial shape priors. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12714–12723 (2022). https://doi.org/10.48550/arXiv.2205.14886
Sellán, S., Chen, Y.-C., Wu, Z., Garg, A., Jacobson, A.: Breaking bad: a dataset for geometric fracture and reassembly. (2022). https://doi.org/10.48550/arXiv.2210.11463
Rasmussen, C.: The infinite gaussian mixture model. In: Solla, S., Leen, T., Müller, K. (eds.) Advances in Neural Information Processing Systems, vol. 12. MIT Press, (1999). https://proceedings.neurips.cc/paper/1999/file/97d98119037c5b8a9663cb21fb8ebf47-Paper.pdf. Accessed Mar 2022
Huang, Q.-X., Flöry, S., Gelfand, N., Hofer, M., Pottmann, H.: Reassembling fractured objects by geometric matching. ACM Trans. Graph. 25(3), 569–578 (2006). https://doi.org/10.1145/1141911.1141925
Tombari, F., Salti, S., Stefano, L.D.: Unique Signatures of Histograms for Local Surface Description. Springer-Verlag (2010)
Pelleg, D., Moore, A.: X-means: extending k-means with efficient estimation of the number of clusters. In: Proceedings of the ICML, pp. 727–734 (2000)
Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM (1987). https://doi.org/10.1016/B978-0-08-051581-6.50070-2
Besl, P.J., McKay, N.D.: A method for registration of 3-d shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14, 239–256 (1992)
Huang, Q.-X., Flöry, S., Gelfand, N., Hofer, M., Pottmann, H.: Reassembling fractured objects by geometric matching. ACM Trans. Graph. 25(3), 569–578 (2006). https://doi.org/10.1145/1141911.1141925
ElNaghy, H., Dorst, L.: Pairwise alignment of archaeological fragments through morphological characterization of fracture surfaces. Int. J. Comput. Vis. 130(9), 2184–2204 (2022). https://doi.org/10.1007/s11263-022-01635-3
Acknowledgements
The authors would like to thank all the editors and reviewers for their valuable comments and the Institute of Visualization of Northwest University of China for providing the models of Terracotta fragments.
Funding
This work was supported by the Shaanxi Science and Technology Association Youth Talent Support Program[20230115], National Natural Science Foundation of China (NSFC) [61802311].
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Conflict of interest
The authors declare no Conflict of interest.
Additional information
Communicated by Yongdong Zhang.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Xiong, M., Shi, Z., Zhou, X. et al. Gmd: Gaussian mixture descriptor for pair matching of 3D fragments. Multimedia Systems 30, 326 (2024). https://doi.org/10.1007/s00530-024-01519-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00530-024-01519-1