Abstract
An optimal control problem for the stationary Navier–Stokes equations with variable density is studied. A bilinear control is applied on the flow domain, while Dirichlet and Navier boundary conditions for the velocity are assumed on the boundary. As a first step, we enunciate a result on the existence of weak solutions of the dynamical equation; this is done by firstly expressing the fluid density in terms of the stream-function. Then, the bilinear optimal control problem is analyzed, and the existence of optimal solutions are proved; their corresponding characterization regarding the first-order optimality conditions are obtained. Such optimality conditions are rigorously derived by using a penalty argument since the weak solutions are not necessarily unique neither isolated, and so standard methods cannot be applied.

Similar content being viewed by others
References
Abergel, C., Casas, F.: Some optimal control problems of multistate equations appearing in fluid mechanics. Math. Model. Numer. Anal. 27, 223–247 (1993)
Alekseev, G.V.: Solvability of stationary problems of boundary control for thermal convection equations. Sib. Math. J. 39(5), 844–858 (1998)
Ammar-Khodja, F., Santos, M.M.: 2D density-dependent Leray problem with a discontinuous density. Methods Appl. Anal. 13(4), 321–335 (2006)
Amrouche, C., Penel, P., Seloula, N.: Some remarks on the boundary conditions in the theory of Navier–Stokes equations. Annales Mathématiques Blaise Pascal 20, 37–73 (2013)
Antonsev, S.N., Kazhikov, A.V., Monakov, B.N.: Boundary Value Problems in Mechanics of Nonhomogeneous Fluids. North-Holland, Amsterdam (1990)
Beirão da Veiga, H.: On the regularity of flows with Ladyzhenskaya shear-dependent viscosity and slip or nonslip boundary conditions. Commun. Pure Appl. Math. 48, 552–577 (2005)
Beirão da Veiga, H.: Regularity for Stokes and generalized Stokes systems under nonhomogeneous slip type boundary conditions. Adv. Differ. Equ. 9(9–10), 1079–1114 (2004)
Borzì, A., Park, E.-J., Vallejos Lass, M.: Multigrid optimization methods for the optimal control of convection diffusion problems with bilinear control. J. Optim. Theory Appl. 168, 510–533 (2016)
Brézis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New York (2011)
Dautray, R., Lions, J.L.: Mathematical Analysis and Numerical Methods for Science and Technology, vol. 2, p. 585. Springer, Berlin (2000)
De los Reyes, J.C., Kunisch, K.: A semi-smooth Newton method for control constrained boundary optimal control of the Navier–Stokes equations. Nonlinear Anal. 62, 1289–1316 (2005)
Frolov, N.N.: On the solvability of a boundary value problem of the motion of a nonhomogeneous fluid. Math. Notes 53(5–6), 650–656 (1993)
Frolov, N.N.: A boundary value problem that describes the motion of a nonhomogeneous fluid. Sib. Math. J. 37(2), 376–393 (1996)
Fujita, H.: A mathematical analysis of motions of viscous incompressible fluid under leak or slip boundary conditions. Res. Inst. Math. Sci. Kōkyūroku 888, 199–216 (1994)
Fujita, H.: A coherent analysis of Stokes flows under boundary conditions of friction type. J. Comput. Appl. Math. 149, 57–69 (2002)
Gunzburger, M.D., Hou, L., Svobodny, T.P.: Boundary velocity control of incompressible flow with an application to viscous drag reduction. SIAM J. Control Optim. 30(1), 167–181 (1992)
Hettich, R., Kaplan, A., Tichatschke, R.: Regularized penalty methods for ill-posed optimal control problems with elliptic equations. Part I: distributed control with bounded control set and state constraints. Control Cybern. 26, 5–28 (1997)
Hettich, R., Kaplan, A., Tichatschke, R.: Regularized penalty methods for ill-posed optimal control problems with elliptic equations. Part II: distributed control with unbounded set and state constraints. Control Cybern. 26, 29–42 (1997)
Illarionov, A.I.: Optimal boundary control of steady-state flow of a viscous inhomogeneous incompressible fluid. Math. Notes 69(5), 614–624 (2001)
Jägger, W., Mikelić, A.: On the roughness-induced effective boundary conditions for an incompressible viscous flow. J. Differ. Equ. 170, 96–122 (2001)
Joseph, D.D.: Fluids dynamics of mixtures of incompressible miscible liquids. In: Fitzgibbon, W., Kuznetsov, Y., Neittaanmäki, P., P’eriaux, J., Pironneau, O. (eds.) Applied and Numerical Partial Differential Equations. Computational Methods in Applied Sciences, vol. 15. Springer, Dordrecht (2010)
Kazhikov, A.V.: Solvability of the initial and boundary-value problem for the equations of motion of an inhomogeneous viscous incompressible fluid. Dokl. Akad. Nauh. 216, 1008–1010 (1974)
Köner, A., Vexler, B.: A priori error estimates for elliptic optimal control problems with bilinear state equation. J. Comput. Appl. Mech. 230, 781–802 (2009)
Lee, H.-C., Imanuvilov, O.Y.: Analysis of Neumann boundary optimal control problems for the stationary Boussinesq equations including solid media. SIAM J. Control Optim. 2(39), 457–477 (2000)
Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer, Berlin (1971)
Lions, J.L.: Control of Distributed Singular Systems. Gauthier-Villars, Paris (1985)
Maxwell, J.C.: On stresses in rarefed gases arising from inequalities of temperature. Philos. Trans. R. Soc. 170, 231–256 (1879)
Mallea-Zepeda, E., Ortega-Torres, E., Villamizar-Roa, É.J.: An optimal control problem for the steady nonhomogeneous asymmetric fluids. Appl. Math. Optim. (2017). https://doi.org/10.1007/s00245-017-9466-5
Mulone, G., Salemi, F.: On the existence of hydrodynamic motion in a domain with free boundary type conditions. Meccanica 18(3), 136–144 (1983)
Mulone, G., Salemi, F.: On the hydrodynamic motion in a domain with mixed boundary conditions: existence, uniqueness, stability and linearization principle. Ann. Mat. Pura Appl. 139(4), 147–174 (1985)
Navier, C.L.M.H.: Sur le lois de l’équilibrie et du mouvement des corps élastiques. Mem. Acad. R. Sci. Inst. France 369 (1827)
Rodríguez-Bellido, M.A., Rueda-Gómez, D.A., Villamizar-Roa, É.J.: On a distributed control problem for a coupled chemotaxis-fluid model. Discret. Contin. Dyn. Syst. Ser. B. 22, 557–571 (2017)
Santos, M.M.: Stationary solution of the Navier-Stokes equations in a 2d bounded domain for incompressible flow with discontinuous density. Z. Angew. Math. Phys. 53, 661–675 (2002)
Schöberl, J., Simon, R., Zulehner, W.: A robust multigrid method for elliptic optimal control problems. SIAM J. Numer. Anal. 49(4), 1482–1503 (2011)
Simon, J.: Nonhomogeneous viscous incompressible fluids: existence of velocity, density and pressure. SIAM J. Math. Anal. 21, 1093–1117 (1990)
Simon, J.: Sur le fluides visqueaux incompressibles et non homogènes. CRAS Paris 309, 447–451 (1989)
Solonnikov, V.A., Scadilov, V.E.: A certain boundary value problem for the stationary system of Navier–Stokes equations. Trudy Mat. Inst. Steklov. 125, 196–210 (1973)
Stavre, R.: A distributed control problem for two coupled fluids in a porous medium. SIAM J. Control Optim. 53(1), 313–335 (2015)
Vallejos Lass, M., Borzì, A.: A robust multigrid method for elliptic optimal control problems. SIAM J. Numer. Anal. 49(4), 1482–1503 (2011)
Verfüth, R.: Finite element approximation of incompressible Navier–Stokes equations with slip boundary condition. Numer. Math. 50, 697–721 (1987)
Vitoriano, F.: On the steady viscous flow of a nonhomogeneous asymmetric fluid. Ann. Mat. Pura Appl. 192, 665–672 (2013)
Acknowledgements
E. Mallea-Zepeda was supported by Proyecto UTA-Mayor 4740-18, Universidad de Tarapacá, Chile. E. Lenes was supported by the Departamento de Investigaciones of the Universidad del Sinú, Colombia.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
About this article
Cite this article
Mallea-Zepeda, E., Lenes, E. & Rodríguez Zambrano, J. Bilinear Optimal Control Problem for the Stationary Navier–Stokes Equations with Variable Density and Slip Boundary Condition. Bull Braz Math Soc, New Series 50, 871–887 (2019). https://doi.org/10.1007/s00574-019-00131-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00574-019-00131-6