Abstract
Recent experiments have shown the possibility to use the brain electrical activity to directly control the movement of robots. Such a kind of brain–computer interface is a natural way to augment human capabilities by providing a new interaction link with the outside world and is particularly relevant as an aid for paralysed humans, although it also opens up new possibilities in human–robot interaction for able-bodied people. One of these new fields of application is the use of brain–computer interfaces in the space environment, where astronauts are subject to extreme conditions and could greatly benefit from direct mental teleoperation of external semi-automatic manipulators—for instance, mental commands could be sent without any output/latency delays, as it is the case for manual control in microgravity conditions. Previous studies show that there is a considerable potential for this technology onboard spacecraft.

Similar content being viewed by others
Notes
Domotics: Use and control of robotic and semi-automatic devices in domestic applications.
Abbreviations
- AI:
-
Artificial intelligence
- ANN:
-
Artificial neural networks
- BCI:
-
Brain–computer interface
- CNS:
-
Central nervous system
- EEG:
-
Electroencephalogram
- EVA:
-
Extra-vehicular activity
- fMRI:
-
functional magnetic resonance imaging
- GCR:
-
Galactic cosmic rays
- HDT:
-
Head-down tilt
- IDIAP:
-
Institute dalle-molle d’Intelligence artificielle perceptuelle
- IVA:
-
Intra-vehicular activity
- LEO:
-
Low-earth orbit
- MEG:
-
Magneto-encephalography
- MMU:
-
Manned manoeuvring unit
- PET:
-
Positron emission tomography
- SAFER:
-
Simplified aid for EVA rescue
- SCR:
-
Solar cosmic radiation
- SPE:
-
Solar particles events
- SPR:
-
Solar particle radiation
- UV:
-
Ultra-violet
References
Vidal J (1977) Real-time detection of brain events in EEG. IEEE Proc Special issue on Biological Signal Processing and Analysis 65:633–664
Menon C, de Negueruela C, Millán J del R, Tonet O, Carpi F, Broschart M, Ferrez PW, Buttfield A, Dario P, Citi L, Laschi C, Tombini M, Sepulveda F, Poli R, Palaniappan R, Tecchio F, Rossini PM, de Rossi D (2009) Prospects on brain-machine interfaces for space system control. Acta Astronaut 64:448–456. doi:10.1016/j.actaastro.2008.09.008
Chapin JK, Moxon KA, Markowitz RS, Nicolelis MAL (1999) Real-time control of a robot arm using simultaneously recorded neurons in the motor cortex. Nat Neurosci 2:664–670
Mussallam S, Corneil BD, Greger B, Scherberger H, Andersen RA (2004) Cognitive control signals for neural prosthetics. Science 305(5681):258–262
Carmena JM, Lebedev MA, Crist RE, O’Doherty JE, Santucci DM, Dimitrov DF, Patil PG, Henriquez CS, Nicolelis MAL (2003) Learning to control a brain-machine interface for reaching and grasping by primates. PloS Biol 1:193–208
Taylor DM, Helms Tillery SI, Schwartz AB (2002) Direct cortical control of 3D neuroprosthetic devices. Science 296(5574):1829–1832
Serruya MD, Hatsopoulos NG, Paninski L, Fellows MR, Donoghue J (2002) Instant neural control of a movement signal. Nature 416(6877):141–142
Leuthardt EC, Schalk G, Wolpaw JR, Ojemann JG, Moran DW (2004) A brain-computer interface using electrocorticographic signals in humans. J. Neural Eng. 1:63–71
Allison BZ, Pineda JA (2003) ERPs evoked by different matrix sizes: implications for a brain computer interface (BCI) system. IEEE Trans Neural Sys Rehab Eng 11:110–113
Bayliss JD (2003) Use of the evoked potential P3 component for control in a virtual environment. IEEE Trans Neural Sys Rehab Eng 11:113–116
Farwell LA, Donchin E (1988) Talking off the top of your head: toward a mental prosthesis utilizing event related brain potentials. Electroenceph Clin Neurophysiol 70:510–523
Gao X, Dingfeng X, Cheng M, Gao S (2003) a BCI-based environmental controller for the motion-disabled. IEEE Trans Neural Sys Rehab Eng 11:137–140
Middendorf M, McMillan G, Calhoun G, Jones KS (2000) Brain-computer interfaces based on the steady-state visual-evoked response. IEEE Trans Rehab Eng 8:211–214
Sutter EE (1992) The brain response interface: communication through visually-induced electrical brain response. J Microcomput Appl 15:31–45
Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM (2002) Brain-computer interfaces for communication and control. Clin Neurophysiol 113:767–791
Millán J del R, Renkens F, Mouriño J, Gerstner W (2004) Non-invasive brain-actuated control of a mobile robot by human EEG. IEEE Trans Biomed Eng 51:1026–1033
Jasper HA (1958) The ten–twenty system of the international federation. Electroenceph Clin Neurophysiol 10:371–375
Jorgensen C, Binsted K (2005) Web browser control using EMG based sub vocal speech recognition. In: Proceedings 38th Hawaii international conference on system sciences (HICS’05): track 9. Integrating humans with intelligent technologies: merging theories of collaborative intelligence and expert cognition. IEEE Computer Society Press, Big Island, pp 294c
Lenda JA (1978) Manned manoeuvering unit: users guide (Martin Marietta Corp.). Report no: NASA-CR-151864
Scoville ZC, Rajula S (2005) SAFER inspection of space shuttle thermal protection system. In: Proceedings of space 2005 (AIAA 2005-6722), Long Beach
Lujan BF, White RJ (1995) Human physiology in space. NASA Headquarters, Washington
Planel H, Oser H (1984) A survey of space biology and space medicine. ESA Brochure BR-17, European space agency—ESA/ESTEC, Noordwijk
de Metz K, Quadens O, Ferri R, de Graeve M (1992) The electroencephalogram during parabolic flights. Microgravity science experiments on board caravelle in parabolic flights. In: ESA workshop held at ESTEC, Noordwijk, The Netherlands, on June 25, WPP-466, Oct 1992, pp 92–107
Tonet O, Tecchio F, Sepulveda F, Citi L, Tombini M, Marinelli M, Focacci F, Laschi C, Dario P, Rossini PM (2006) Critical review and future perspectives of non-invasive brain-machine interfaces (ESA ariadna study, contract 19707/06/NL/HE—final report). European space agency—ESA/ESTEC, Noordwijk
Buttfield A, Ferrez PW, Millán J del R (2006) Towards a robust BCI: error potentials and online learning. IEEE Trans Neural Sys Rehab Eng 14(2):164–168
Houston A, Rycroft M (1999) Keys to space—an interdisciplinary approach to space studies. McGraw-Hill, Boston
Clément G (2005) Fundamentals of space medicine. Microcosm Press, Kluwer Academic Publishers, Dordrecht
McIntyre J, Berthoz A, Lacquaniti F (1998) Reference frames and internal models for visuo-manual coordination: what can we learn from microgravity experiments? Brain Res Brain Res Rev 28(1–2):143–154
Lackner JR, DiZio P (2000) Human orientation and movement control in weightless and artificial gravity environments. Exp Brain Res 130(1):2–26
Horneck G, Facius R, Reichert M, Rettberg P, Seboldt W, Manzey D, Comet B, Maillet A, Preiss H, Schauer L, Dussap CG, Poughon L, Belyavin A, Reitz G, Baumstark-Khan C, Gerzer R (2003) HUMEX, a study on the survivability and adaptation of humans to long-duration exploratory missions. ESA special publication SP-1264, European space agency—ESA/ESTEC, Noordwijk
NASA (2004) Bioastronautics critical path roadmap (draft). NASA Johnson Space Center, Houston
Baumstark-Khan C, Facius R (2002) Life under conditions of ionizing radiation. In: Horneck G, Baumstark-Khan C (eds) Astrobiology: the quest for the conditions of life. Springer, Berlin, pp 260–283
Casolino M, Durante M, Mueller-Mellin R, Nieminen P, Reitz G, Shurshakov LV, Sorbi M, Spillantini P (2005) Shielding against cosmic radiation on interplanetary missions. In: Wilson A (ed) ESA SP-1281: topical teams in the life & physical sciences—towards new research activities in space. European Space Agency—ESA/ESTEC, Noordwijk, pp 184–199
Stark JPW (2006) The spacecraft environment and its effect on design. In: Fortescue P, Stark JPW, Swinerd G (eds) Spacecraft systems engineering. Wiley & Sons Ltd, London, pp 11–47
Narici L, Belli F, Bidoli V, Casolino M, De Pascale MP, Di Fino L, Furano G, Modena I, Morselli A, Picozza P, Reali E, Rinaldi A, Ruggieri D, Sparvoli R, Zaconte V, Sannita WG, Carozzo S, Licoccia S, Romagnoli P, Traversa E, Cotronei V, Vazquez M, Miller J, Salnitskii VP, Shevchenko OI, Petrov VP, Trukhanov KA, Galper A, Khodarovich A, Korotkov MG, Popov A, Vavilov N, Avdeev S, Boezio M, Bonvicini W, Vacchi A, Zampa N, Mazzenga G, Ricci M, Spillantini P, Castellini G, Vittori R, Carlson P, Fuglesang C, Schardt D (2004) The ALTEA/ALTEINO projects: studying functional effects of microgravity and cosmic radiation. Adv Space Res 33(8):1352–1357
Broschart M, de Negueruela C, Millán J del R, Menon C (2007) Augmenting astronaut’s capabilities through brain-machine interfaces. In: Workshop on artificial intelligence for space applications, 20th international joint conference on artificial intelligence (IJCAI). Hyderabad
Horneck G, Baumstark-Khan C, Facius R (2006) Radiation biology. In: Clément G, Slenzka K (eds) Fundamentals of space biology. Microcosm Press & Springer, El Segundo, pp 291–336
Pinsky LS, Osborne WZ, Bailey JV, Benson RE, Thompson LF (1974) Light flashes observed by astronauts on Apollo 11 through Apollo 17. Science 183(4128):957–959
Slenzka K (2003) Neuroplasticity changes during space flight. Adv Space Res 31(6):1595–1604
Nudo RJ, Plautz EJ, Milliken GW (1997) Adaptive plasticity in primate motor cortex as a consequence of behavioral experience and neuronal injury. Semin Neurosci 9(1–2):13–23
Benfenati F (2007) Synaptic plasticity and the neurobiology of learning and memory. Acta Biomed 78(Suppl. 1):58–66
Fuijii MD, Patten BM (1992) Neurology of microgravity and space travel. Neurol Clin 10(4):999–1013
Moore MM (2003) Real-world applications for brain-computer interface technology. IEEE Trans Neural Syst Rehabil Eng 11(2):162–165
Ferrez PW, Millán J del R (2005) You Are Wrong!—automatic detection of interaction errors from brain waves. In: Proceedings 19th international joint conference on artificial intelligence (ICAJI). Edinburgh
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
de Negueruela, C., Broschart, M., Menon, C. et al. Brain–computer interfaces for space applications. Pers Ubiquit Comput 15, 527–537 (2011). https://doi.org/10.1007/s00779-010-0322-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00779-010-0322-8