Abstract
The (re)distribution of collective gains and costs is a central question for individuals and organizations contemplating cooperation under uncertainty. The theory of cooperative interval games provides a new game theoretical angle and suitable tools for answering this question. This survey aims to briefly present the state-of-the-art in this young field of research, discusses how the model of cooperative interval games extends the cooperative game theory literature, and reviews its existing and potential applications in economic and operations research situations with interval data.
Similar content being viewed by others
References
Alparslan Gök SZ (2009) Cooperative interval games. PhD. Dissertation, Middle East Technical University
Alparslan Gök SZ, Branzei R, Fragnelli V, and Tijs S (2008a) Sequencing interval situations and related games. Institute of Applied Mathematics, METU and Tilburg University, Center for Economic Research, The Netherlands, CentER DP 63 (preprint no. 113)
Alparslan Gök SZ, Branzei R, Tijs S (2008b) Cores and stable sets for interval-valued games. Institute of Applied Mathematics, METU and Tilburg University, Center for Economic Research, The Netherlands, CentER DP 17 (preprint no. 90)
Alparslan Gök SZ, Branzei R, Tijs S (2008c) Big boss interval games. Institute of Applied Mathematics, METU and Tilburg University, Center for Economic Research, The Netherlands, CentER DP 47 (preprint no. 103)
Alparslan Gök SZ, Branzei R, Tijs S (2008d) Airport interval games and their Shapley value (to appear in Oper Res Decis)
Alparslan Gök SZ, Branzei R, Tijs S (2009) Convex interval games. J Appl Math Decis Sci 2009(Article ID 342089): 14. doi:10.1115/2009/342089
Alparslan Gök SZ, Branzei R, Tijs S (2009b) The interval Shapley value: an axiomatization. Institute of Applied Mathematics, METU (to appear in Central Eur J Oper Res (CEJOR)), doi:10.1007/s10100-009-0096-0 (preprint no. 130)
Alparslan Gök SZ, Miquel S, Tijs S (2009c) Cooperation under interval uncertainty. Math Methods Oper Res 69: 99–109
Aubin JP (1974) Coeur et valeur des jeux .ous á paiements latéraux. Comptes Rendus de l.Académie des Sciences Paris 279(A): 891–894
Bilbao M (2000) Cooperative games on combinatorial structures. Theory and decision library, series C. Kluwer, Dordrecht
Branzei R, Alparslan Gök SZ (2008) Bankruptcy problems with interval uncertanity. Econ Bull 3(56): 1–10
Branzei R, Alparslan Gök SZ (2009) On the convexity of interval dominance cores. Institute of Applied Mathematics, METU (preprint no. 139)
Branzei R, Dimitrov D, Tijs S (2003) Shapley-like values for interval bankruptcy games. Econ Bull 3: 1–8
Branzei R, Dall’Aglio M, Tijs S (2008a) Interval game theoretic division rules. Tilburg University, Center for Economic Research, The Netherlands, CentER DP 97
Branzei R, Dimitrov D, Tijs S (2008b) Models in cooperative game theory. Game Theory Math Methods (Springer)
Branzei R, Mallozzi L, Tijs S (2008c) Peer group situations and games with interval uncertainty. Dipartimento di Matematica e Applicazioni, Universita’ di Napoli (preprint no. 64)
Branzei R, Tijs S, Alparslan Gök SZ (2008d) Some characterizations of convex interval games. AUCO Czech Econ Rev 3(2): 217–224
Branzei R, Tijs S, Alparslan Gök SZ (2008e) How to handle interval solutions for cooperative interval games. Institute of Applied Mathematics, METU (preprint no. 110)
Carpente L, Casas-Méndez B, García-Jurado I, van den Nouweland A (2007) The truncated core for games with limited aspirations, vol 1010. Department of economics—working papers series, The University of Melbourne (preprint no. 110)
Carpente L, Casas-Méndez B, García-Jurado I, van den Nouweland A (2008) Coalitional interval games for strategic games in which players cooperate. Theory Decis 65(3): 253–269
Charnes A, Granot D (1973) Prior solutions: extensions of convex nucleolus solutions to chance-constrained games. In: Proceedings of the computer science and statistics seventh symposium at Iowa state University, pp 323–332 (preprint no. 110)
Drechsel J, Kimms A (2008) An algorithmic approach to cooperative interval-valued games and interpretation problems. Working paper, University of Duisburg-Essen (preprint no. 110)
Dutta B, Ray D (1989) A concept of egalitarianism under participation constraints. Econometrica 57: 615–635
Fernández FR, Hinojosa MA, Puerto J (2002) Core solutions in vector-valued games. J Optimiz Theory Appl 112(2): 331–360
Gillies DB (1959) Solutions to general non-zero-sum games. In: Tucker AW, Luce RD (eds) Contributions to the theory of games IV, annals of mathematical studies vol 40. Princeton University Press, Princeton, pp 47–85
Hart S, Mas-Colell A (1989) Potential, value, and, consistency. Econometrica 57: 589–614
Hsiao C-R, Raghavan TES (1992) Monotonicity and dummy free property for multi-choice cooperative games. Int J Game Theory 21: 301–312
Jahn J (1983) Duality in vector optimization. Math Program 25: 343–355
Mallozzi L, Scalzo V, Tijs S (2009) Fuzzy interval cooperative games. Dipartimento di Matematica e Applicazioni, Universita’ di Napoli (preprint no. 1)
Mares M (2001) Fuzzy cooperative games: cooperation with vague expectations. Physica Verlag, Heidelberg
Moore R (1979) Methods and applications of interval analysis. SIAM, Philadelphia
Moretti S, Alparslan Gök SZ, Branzei R, Tijs S (2008) Connection situations under uncertainty. Institute of Applied Mathematics, METU and Tilburg University, Center for Economic Research, The Netherlands, CentER DP 64 (preprint no. 112)
Muto S, Nakayama M, Potters J, Tijs S (1988) On big boss games. Econ Stud Q 39(4): 303–321
Puerto J, Fernández FR, Hinojosa MA (2008) Partially ordered cooperative games: extended core and Shapley value. Ann Oper Res 158(1): 143–159
Schmeidler D (1969) The nucleolus of a characteristic function game. SIAM J Appl Math 17: 1163–1170
Shapley LS (1953) A value for n-person games. Ann Math Stud 28: 307–317
Shapley LS (1971) Cores of convex games. Int J Game Theory 1: 11–26
Suijs J, Borm P, De Waegenaere A, Tijs S (1999) Cooperative games with stochastic payoffs. Eur J Oper Res 113: 193–205
Tijs S (1981) Bounds for the core and the τ-value. In: Moeschlin O, Pallaschke D (eds) Game theory and mathematical economics. North Holland, Amsterdam, pp 123–132
Tijs S (1990) Big boss games, clan games and information market games. In: Ichiishi T, Neyman A, Tauman Y (eds) Game theory and applications. Academic Press, San Diego, pp 410–412
Tijs S (2003) Introduction to game theory. SIAM, Hindustan Book Agency, India
Timmer J, Borm P, Tijs S (2005) Convexity in stochastic cooperative situations. Int Game Theory Rev 7: 25–42
Yanovskaya E, Branzei R, Tijs S (2008) Monotonicity properties of interval solutions and the Dutta–Ray solution for convex interval games. Tilburg University, Center for Economic Research, The Netherlands, CentER DP 102
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Branzei, R., Branzei, O., Alparslan Gök, S.Z. et al. Cooperative interval games: a survey. Cent Eur J Oper Res 18, 397–411 (2010). https://doi.org/10.1007/s10100-009-0116-0
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10100-009-0116-0