Abstract.
There is growing evidence that temporal lobe seizures are preceded by a preictal transition, characterized by a gradual dynamical change from asymptomatic interictal state to seizure. We herein report the first prospective analysis of the online automated algorithm for detecting the preictal transition in ongoing EEG signals. Such, the algorithm constitutes a seizure warning system. The algorithm estimates STL max , a measure of the order or disorder of the signal, of EEG signals recorded from individual electrode sites. The optimization techniques were employed to select critical brain electrode sites that exhibit the preictal transition for the warning of epileptic seizures. Specifically, a quadratically constrained quadratic 0-1 programming problem is formulated to identify critical electrode sites. The automated seizure warning algorithm was tested in continuous, long-term EEG recordings obtained from 5 patients with temporal lobe epilepsy. For individual patient, we use the first half of seizures to train the parameter settings, which is evaluated by ROC (Receiver Operating Characteristic) curve analysis. With the best parameter setting, the algorithm applied to all cases predicted an average of 91.7% of seizures with an average false prediction rate of 0.196 per hour. These results indicate that it may be possible to develop automated seizure warning devices for diagnostic and therapeutic purposes.
Similar content being viewed by others
References
Abarbanel, H.D.I.: Analysis of Observed Chaotic Data. Springer-Verlag, New York 1996
Athanasiou, G.G., Bachas, C.P., Wolf, W.F.: Invariant Geometry of Spin-glass States. Phy. Rev. B 35, 1965–1968 (1987)
Babloyantz, A., Destexhe, A.: Low dimensional chaos in an instance of epilepsy. Proc. Natl. Acad. Sci. USA 83, 3513–3517 (1986)
Barahona, F.: On the computational complexity of spin glass models. J. Phys. A: Math. Gen. 15, 3241–3253 (1982)
Barahona, F.: On the exact ground states of three-dimensional ising spin glasses. J. Phys. A: Math. Gen. 15, L611–L615 (1982)
Barahona, F., Grötschel, M., Jüger, M., Reinelt, G.: An application of combinatorial optimization to statistical physics and circuit layout design. Operations Research 36, 493–513 (1988)
Barlow, J.S.: Methods of analysis of nonstationary EEGs with emphasis on segmentation techniques. J. Clin. Neutophysiol 2, 267–304 (1985)
Casdagli, M.C., Iasemidis, L.D., Sackellares, J.C., Roper, S.N., Gilmore, R.L., Savit, R.S.: Characterizing nonlinearity in invasive EEG recordings from temporal lobe epilepsy. Physica D 99, 381–399 (1996)
Casdagli, M.C., Iasemidis, L.D., Roper, S.N., Gilmore, R.L., Savit, R.S., Sackellares, J.C.: Nonlinearity in invasive EEG recordings from patients with temporal lobe epilepsy. Electroenceph. Clin. Neurophysiol. 102, 98–105 (1997)
Shiau, D.S., Luo, Q., Gilmore, S.L., Roper, S.N., Pardalos, P.M., Sackellares, J.C., Iasemidis, L.D.: Epileptic seizures resetting revisited. Epilepsia. 41 (S7), 208–209 (2000)
Elger, C.E., Lehnertz, K.: Seizure prediction by non-linear time series analysis of brain electrical activity. Europ. J. Neurosci. 10, 786–789 (1998)
Feber, F.: Treatment of some nonstationarities in the EEG. Neuropsychobiology 17, 100–104 (1987)
Frank, W.G., Lookman, T., Nerenberg, M.A., Essex, C., Lemieux, J., Blume, W.: Chaotic time series analyses of epileptic seizures. Physica D 46, 427–438 (1990)
Jansen, B.H., Cheng, W.K.: Structural EEG analysis. Int. J. Biomed. Comput. 23, 221-237 (1988)
Horst, H., Pardalos, P.M., Thoai, V.: Introduction to global optimization, Series on Nonconvex Optimization and its Applications. Kluwer Academic Publishers, Dordrecht, 1995
Iasemidis, L.D., Zaveri, H.P., Sackellares, J.C., Williams, W.J.: Phase space analysis of EEG in temporal lobe epilepsy. IEEE Eng. in Medicine and Biology Society, 10th Ann. Int. Conf., 1201–1203 (1988)
Iasemidis, L.D., Zaveri, H.P., Sackellares, J.C., Williams, W.J.: Linear and nonlinear modeling of ECoG in temporal lobe epilepsy. 25th Annual Rocky Mountain Bioengineering Symposium 24, 187–193 (1988)
Iasemidis, L.D., Zaveri, H.P., Sackellares, J.C., Williams, W.J., Hood, T.W.: Nonlinear dynamics of electrocorticographic data. J. of Clinical Neurophysiology 5, 339 (1988)
Iasemidis, L.D., Sackellares, J.C.: Long time scale spatio-temporal patterns of entrainment in preictal ECoG data in human temporal lobe epilepsy. Epilepsia 31, 621 (1990)
Iasemidis, L.D., Sackellares, J.C., Zaveri, H.P., Williams, W.J.: Phase space topography of the electrocorticogram and the Lyapunov exponent in partial seizures. Brain Topogr 2, 187–201 (1990)
Iasemidis, L.D.: On the dynamics of the human brain in temporal lobe epilepsy. Ph.D. dissertation, University of Michigan, Ann Arbor, (1991)
Iasemidis, L.D., Sackellares, J.C.: The evolution with time of the spatial distribution of the largest Lyapunov exponent on the human epileptic cortex. In: Measuring Chaos in the Human Brain, Duke, D.W., Pritchard, W.S. (eds.) World Scientific, Singapore, 1991, pp. 49–82
Iasemidis, L.D., Sackellares, J.C., Savit, R.S.: Quantification of hidden time dependencies in the EEG within the framework of nonlinear dynamics. In: Nonlinear dynamical analysis of the EEG, Jansen, B.H., Brandt, M.E. (eds.) World Scientific, Singapore, 1993, pp. 30–47
Iasemidis, L.D., Savit, R.S., Sackellares, J.C.: Time dependencies in partial epilepsy. Epilepsia 34S, 130–131 (1993)
Iasemidis, L.D., Olson, L.D., Sackellares, J.C., Savit, R. (1994): Time dependencies in the occurrences of epileptic seizures: a nonlinear approach. Epilepsy Research 17, 81–94 (1994)
Iasemidis, L.D., Barreto, A., Gilmore, R.L., Uthman, B.M., Roper, S.N., Sackellares, J.C.: Spatio-temporal evolution of dynamical measures precedes onset of mesial temporal lobe seizures. Epilepsia 35S, 133 (1994)
Iasemidis, L.D., Sackellares, J.C.: Chaos theory and epilepsy. The Neuroscientist 2, 118–126 (1996)
Iasemidis, L.D., Principe, J.C., Sackellares, J.C.: Spatiotemporal dynamics of human epileptic seizures. In: 3rd Experimental Chaos Conference, Harrison, R.G., Weiping, L., Ditto, W., Pecora, L., Vohra, S. (eds.) World Scientific, Singapore, 1996, pp. 26–30
Iasemidis, L.D., Pappas, K.E., Gilmore, R.L., Roper, S.N., Sackellares, J.C.: Detection of the preictal transition state in scalp-sphenoidal recordings. Annual American Clinical Neurophysiology Society Meeting, Boston, 1996, pp. 5–10
Iasemidis, L.D., Pappas, K.E., Gilmore, R.L., Roper, S.N., Sackellares, J.C.: Preictal entrainment of a critical cortical mass is a necessary condition for seizure occurrence. Epilepsia 37S5, 90 (1996)
Iasemidis, L.D., Gilmore, R.L., Roper, S.N., Sackellares, J.C.: Dynamical interaction of the epileptogenic focus with extrafocal sites in temporal lobe epilepsy. Annals of Neurology 42, 429 (1997)
Iasemidis, L.D., Principe, J.C., Czaplewski, J.M., Gilmore, R.L., Roper, S.N., Sackellares, J.C.: Spatiotemporal transition to epileptic seizures: a nonlinear dynamical analysis of scalp and intracranial EEG recordings. In: Spatiotemporal Models in Biological and Artificial Systems, Silva, F.L., Principe, J.C., Almeida, L.B., (eds.) IOS Press, Amsterdam, 1997, pp. 81–88
Iasemidis, L.D., Sackellares, J.C., Gilmore, R.L., Roper, S.N.: Automated seizure prediction paradigm. Epilepsia 39S6, 207 (1998)
Iasemidis, L.D., Shiau, D.-S., Sackellares, J.C., Pardalos, P.M.: Transition to epileptic seizures: Optimization. In: DIMACS series in Discrete Mathematics and Theoretical Computer Science. Du, D.Z., Pardalos, P.M., Wang, J, (eds.) American Mathematical Society, Providence, 1999, pp. 55–74
Iasemidis, L.D., Principe, J.C., Sackellares, J.C.: Measurement and quantification of spatiotemporal dynamics of human epileptic seizures. In: Nonlinear biomedical signal processing. Akay, M. (ed.) IEEE Press, vol. II, 2000, pp. 294–318
Iasemidis, L.D., Pardalos, P.M., Sackellares, J.C., Shiau, D.-S.: Quadratic binary programming and dynamical system approach to determine the predictability of epileptic seizures. J. Combinatorial Optimization 5, 9–26 (2001)
Iasemidis, L. D., Shiau, D.-S., Pardalos, P.M., Sackellares, J.C.: Phase Entrainment and Predictability of Epileptic Seizures. In: Biocomputing. Pardalos, P.M., Principe, J.C., (eds.) Kluwer Academic Publishers, Dordrecht, 2001
Iasemidis, L.D., Shiau, D.S., Sackellares, J.C., Pardalos, P.M., Prasad, A.: Dynamical resetting of the human brain at epileptic seizures: application of nonlinear dynamics and global optimization techniques. IEEE Trans. Biomed Eng. (2002) submitted
Lehnertz, K., Elger, C.E.: Can epileptic seizures be predicted? Evidence from nonlinear time series analysis of brain electrical activity. Phys. Rev. Lett 80, 5019–5022 (1998)
Le Van Quyen, M., Martinerie, J., Baulac, M., Varela, F.: Anticipating epileptic seizures in real time by non-linear analysis of similarity between EEG recordings. NeuroReport 10, 2149–2155 (1999)
Litt, B., Esteller, R., Echauz, J., Maryann, D.A., Shor, R., Henry, T., Pennell, P., Epstein, C., Bakay, R., Dichter, M., Vachtservanos, G.: Epileptic seizures may begin hours in advance of clinical onset: A report of five patients. Neuron 30, 51–64 (2001)
Manuca, R., Savit, R.: Stationary and nonstationary in time series analysis. Physica D 99, 134–161 (1999)
Martinerie, J., Van Adam, C., Le Van Quyen, M.: Epileptic seizures can be anticipated by non-linear analysis. Nature Medicine 4, 1173–1176 (1998)
Mezard, M., Parisi, G., Virasoro, M.A.: Spin Glass Theory and Beyond. World Scientific, Singapore, (1987)
Olson, L.D., Iasemidis, L.D., Sackellares, J.C.: Evidence that interseizure intervals exhibit low dimensional dynamics. Epilepsia 30, 644 (1989)
Packard, N.H., Crutchfield, J.P., Farmer, J.D.: Geometry from time series. Phys. Rev. Lett. 45, 712–716 (1980)
Palus, M., Albrecht, V., Dvorak, I.: Information theoretic test of nonlinearlity in time series. Phys. Rev. A 34, 4971–4972 (1993)
Pardalos, P.M., Rodgers, G.: Parallel branch and bound algorithms for unconstrained quadratic zero-one programming. In: Impact of recent computer advances on operations research. Sharda R, et al. (eds.) North-Holland
Pardalos, P.M., Rodgers, G.: Computational aspects of a branch and bound algorithm for quadratic zero-one programming. Computing 45, 131–144 (1990)
Rapp, P.E., Zimmerman, I.D., Albano, A.M.: Experimental studies of chaotic neural behavior: cellular activity and electroencephalographic signals. In: Nonlinear Oscillations in Biology and Chemistry. Othmer HG, (ed.) Springer-Verlag, Berlin, 1986, pp. 175–805
Sackellares, J.C., Iasemidis, L.D., Pappas, K.E., Gilmore, R.L., Uthman, B.M., Roper, S.N.: Dynamical studies of human hippocampus in limbic epilepsy. Neurology 45S, 404 (1995)
Sackellares, J.C., Iasemidis, L.D., Gilmore, R.L., Roper, S.N.: Epileptic seizures as neural resetting mechanisms. Epilepsia 38 (S3), 189 (1997)
Sackellares, J.C., Iasemidis, L.D., Shiau, D.-S.: Detection of the preictal transition in scalp EEG. Epilepsia 40, 176 (1999)
Sackellares, J.C., Iasemidis, L.D., Gilmore, R.L., Roper, S,N.: Epilepsy - when chaos fails. In: Chaos in the brain? Lehnertz, K., Arnhold, J., Grassberger, P., Elger, C.E. (eds.) World Scientific, Singapore, 2002
Sackellares, J.C., Iasemidis, L.D., Pardalos, P.M., Shiau, D.-S.: Combined Application of Global Optimization and Nonlinear Dynamics to Detect State Resetting in Human Epilepsy. In: Biocomputing. Pardalos, P.M., Principe, J.C. (eds.) Kluwer Academic Publishers, Dordrecht, 2001
Takens, F.: Detecting strange attractors in turbulence. In: Dynamical systems and turbulence, Lecture notes in mathematics. Rand, D.A. and Young, L.S., (eds.) Springer-Verlag, Heidelburg, 1981
Theiler, J.: Spurious dimension from correlation algorithms applied to limited time-series data. Phys. Rev. A 34, 2427–2432 (1986)
Theiler, J., Rapp, P.E.: Re-examination of the evidence for low-dimensional, nonlinear structure in the human electroencephalogram. Electroencephalogr. Clin. Neurophysiol. 98, 213–222 (1996)
Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Physica D 16, 285–317 (1985)
Wolf, A., Vastano, J.A.: Intermediate length scale effects in Lyapunov exponent estimation. In: Dimensions and Entropies in Chaotic Systems: Quantification of Complex Behavior. Mayer-Kress, G. (ed.) Springer-Verlag, Berlin, 1986 pp. 94–99
Author information
Authors and Affiliations
Additional information
Mathematics Subject Classification (1991):20E28, 20G40, 20C20
Rights and permissions
About this article
Cite this article
Pardalos, P., Wanpracha Chaovalitwongse, Iasemidis, L. et al. Seizure warning algorithm based on optimization and nonlinear dynamics. Math. Program., Ser. A 101, 365–385 (2004). https://doi.org/10.1007/s10107-004-0529-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10107-004-0529-4