Skip to main content
Log in

Exotic Quantifiers, Complexity Classes, and Complete Problems

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We define new complexity classes in the Blum–Shub–Smale theory of computation over the reals, in the spirit of the polynomial hierarchy, with the help of infinitesimal and generic quantifiers. Basic topological properties of semialgebraic sets like boundedness, closedness, compactness, as well as the continuity of semialgebraic functions are shown to be complete in these new classes. All attempts to classify the complexity of these problems in terms of the previously studied complexity classes have failed. We also obtain completeness results in the Turing model for the corresponding discrete problems. In this setting, it turns out that infinitesimal and generic quantifiers can be eliminated, so that the relevant complexity classes can be described in terms of the usual quantifiers only.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Allender, P. Bürgisser, J. Kjeldgaard-Pedersen, and P. Bro Miltersen, On the complexity of numerical analysis. in: Proc. 21st Ann. IEEE Conference on Computational Complexity, pp. 331–339, 2006

  2. E. Artin and O. Schreier, Algebraische Konstruktion reeller Körper, Abh. Math. Sem. Univ. Hamburg 5 (1927), 85–99.

    Article  Google Scholar 

  3. S. Basu, R. Pollack, and M.-F. Roy, Algorithms in Real Algebraic Geometry, Algorithms and Computation in Mathematics, Vol. 10, Springer, Berlin, 2003.

    MATH  Google Scholar 

  4. G. A. Bliss, Algebraic Functions, Dover, New York, 1966.

    MATH  Google Scholar 

  5. L. Blum, F. Cucker, M. Shub, and S. Smale, Complexity and Real Computation, Springer, New York, 1998.

    Google Scholar 

  6. L. Blum, M. Shub, and S. Smale, On a theory of computation and complexity over the real numbers, Bull. Am. Math. Soc. 21 (1989), 1–46.

    Article  MATH  MathSciNet  Google Scholar 

  7. J. Bochnak, M. Coste, and M. F. Roy, Géometrie algébrique réelle, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, Vol. 12, Springer, Berlin, 1987.

    MATH  Google Scholar 

  8. O. Bournez, F. Cucker, P. Jacobé de Naurois, and J.-Y. Marion, Implicit complexity over an arbitrary structure; Sequential and parallel polynomial time, J. Log. Comput. 15 (2005), 41–58.

    Article  Google Scholar 

  9. E. Brieskorn and H. Knörrer, Plane Algebraic Curves, Birkhäuser, Basel, 1986. Translated from the German by John Stillwell.

    MATH  Google Scholar 

  10. P. Bürgisser, Completeness and Reduction in Algebraic Complexity Theory, Algorithms and Computation in Mathematics, Vol. 7, Springer, Berlin, 2000.

    MATH  Google Scholar 

  11. P. Bürgisser and F. Cucker, Counting complexity classes for numeric computations II: Algebraic and semialgebraic sets, J. Complex. 22(2) (2006), 147–191.

    Article  MATH  Google Scholar 

  12. P. Bürgisser and F. Cucker, Counting complexity classes for numeric computations I: Semilinear sets, SIAM J. Comput. 33 (2004), 227–260.

    Article  Google Scholar 

  13. P. Bürgisser, F. Cucker, and P. J. de Naurois, The complexity of semilinear problems in succinct representation, Comput. Complex. 15 (2006), 197–235.

    Article  MATH  Google Scholar 

  14. F. Cucker, PR≠NCR, J. Complex. 8 (1992), 230–238.

    Article  MATH  MathSciNet  Google Scholar 

  15. F. Cucker, On the complexity of quantifier elimination: The structural approach, Comput. J. 36 (1993), 399–408.

    Article  MathSciNet  Google Scholar 

  16. F. Cucker and D. Y. Grigoriev, On the power of real Turing machines over binary inputs, SIAM J. Comput. 26 (1997), 243–254.

    Article  MATH  MathSciNet  Google Scholar 

  17. F. Cucker and P. Koiran, Computing over the reals with addition and order: Higher complexity classes, J. Complex. 11 (1995), 358–376.

    Article  MATH  MathSciNet  Google Scholar 

  18. F. Cucker and M. Matamala, On digital nondeterminism, Math. Syst. Theory 29 (1996), 635–647.

    MATH  MathSciNet  Google Scholar 

  19. F. Cucker and K. Meer, Logics which capture complexity classes over the reals, J. Symb. Log. 64 (1999), 363–390.

    Article  MATH  MathSciNet  Google Scholar 

  20. F. Cucker and F. Rosselló, On the complexity of some problems for the Blum, Shub & Smale model, in: LATIN’92, Lecture Notes in Computer Science, Vol. 583, pp. 117–129, Springer, Berlin, 1992.

    Google Scholar 

  21. F. Cucker and M. Shub, Generalized knapsack problems and fixed degree separations, Theor. Comput. Sci. 161 (1996), 301–306.

    Article  MATH  MathSciNet  Google Scholar 

  22. F. Cucker and A. Torrecillas, Two P-complete problems in the theory of the reals, J. Complex. 8 (1992), 454–466.

    Article  MATH  MathSciNet  Google Scholar 

  23. E. Grädel and K. Meer, Descriptive complexity theory over the real numbers, in: J. Renegar, M. Shub, S. Smale, editors, The Mathematics of Numerical Analysis, Lectures in Applied Mathematics, Vol. 32, pp. 381–404, Amer. Math. Soc., Providence, 1996.

    Google Scholar 

  24. R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, Vol. 52, Springer, New York, 1977.

    MATH  Google Scholar 

  25. R. Impagliazzo and B. Kabanets, Derandomizing polynomial identity tests means proving circuit lower bounds, Comput. Complex. 13 (2004), 1–46.

    Article  MATH  MathSciNet  Google Scholar 

  26. S. C. Kleene, Recursive predicates and quantifiers, Trans. Am. Math. Soc. 53 (1943), 41–73.

    Article  MATH  MathSciNet  Google Scholar 

  27. P. Koiran, Computing over the reals with addition and order, Theor. Comput. Sci. 133 (1994), 35–47.

    Article  MATH  MathSciNet  Google Scholar 

  28. P. Koiran, A weak version of the Blum, Shub & Smale model, J. Comput. Syst. Sci. 54 (1997), 177–189.

    Article  MATH  MathSciNet  Google Scholar 

  29. P. Koiran, The real dimension problem is \(\mathsf{NP}_{\mathbb{R}}\) -complete, J. Complex. 15(2) (1999), 227–238.

    Article  MATH  MathSciNet  Google Scholar 

  30. M. Mignotte, Mathematics for Computer Algebra, Springer, New York, 1992.

    MATH  Google Scholar 

  31. J. Renegar, On the computational complexity and geometry of the first-order theory of the reals, Parts I, II, III, J. Symb. Comput. 13(3) (1992), 255–352.

    Article  MATH  MathSciNet  Google Scholar 

  32. L. Stockmeyer, The polynomial-time hierarchy, Theor. Comput. Sci. 3 (1977), 1–22.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Bürgisser.

Additional information

Communicated by Mike Shub.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bürgisser, P., Cucker, F. Exotic Quantifiers, Complexity Classes, and Complete Problems. Found Comput Math 9, 135–170 (2009). https://doi.org/10.1007/s10208-007-9006-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-007-9006-9

Keywords

Mathematics Subject Classification (2000)

Navigation

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy