Abstract
We study distributions of persistent homology barcodes associated to taking subsamples of a fixed size from metric measure spaces. We show that such distributions provide robust invariants of metric measure spaces and illustrate their use in hypothesis testing and providing confidence intervals for topological data analysis.







Similar content being viewed by others
References
R. J. Adler, O. Bobrowski, and S. Weinberger. Crackle: The persistent homology of noise. arXiv:1301.1466, 2013.
R. J. Adler, O. Bobrowski, M. S. Borman, E. Subag, and S. Weinberger. Persistent homology for random fields and complexes. Inst. Math. Stat. 6 (2010), 124–143.
O. Bobrowski and R. J. Adler. Distance functions, critical points, and topology for some random complexes. arXiv:1107.4775, 2011.
A. J. Blumberg and M. A. Mandell. Resampling methods for estimating persistent homology (in preparation).
P. Bubenik. Statistical topology using persistence landscapes. arXiv:1207.6437, 2012.
P. Bubenik and J. A. Scott. Categorication of persistent homology. arXiv:1205.3669, 2012.
P. Bubenik, G. Carlsson, P. T. Kim, and Z.-M. Luo. Statistical topology via Morse theory persistence and nonparametric estimation. In Algebraic methods in statistics and probability II, Contemp. Math., 516. Amer. Math. Soc., Providence, RI, 2010, pp. 75–92.
F. Cagliari, M. Ferri and P. Pozzi. Size functions from the categorical viewpoint. Acta Appl. Math. 67 (2001), 225–235.
C. Caillerie, F. Chazal, J. Dedecker, and B. Michel. Deconvolution for the Wasserstein metric and geometric inference. Electron. J. Statist. 5 (2011), 1394–1423.
G. Carlsson and V. De Silva. Zigzag persistence. Foundations of computational mathematics 10 (2010), 367–405.
G. Carlsson and F. Memoli. Characterization, stability, and convergence of hierarchical clustering methods. Journal of machine learning research 11 (2009), 1425–1470.
G. Carlsson, T. Ishkhanov, V. de Silva., A. Zomorodian. On the local behavior of spaces of natural images. International journal of computer vision 76 (2008), 1–12.
F. Chazal, D. Cohen-Steiner, L.J. Guibas, F. Memoli, S. Oudot. Gromov-Hausdorff stable signatures for shapes using persistence. Comput. Graph. Forum, 28 (2009), 1393–1403.
F. Chazal, D. Cohen-Steiner, and Q. Merigot. Geometric inference for probability measures. Found. Comp. Math. 11 (2011), 733–751.
F. Chazal, V. De Silva, M. Glisse, and S. Oudot. The structure and stability of persistence modules. arXiv:1207.3674, 2012.
F. Chazal, V. De Silva, and S. Oudot. Persistence stability for geometric complexes. Geometriae Dedicata (2013). doi:10.1007/s10711-013-9937-z.
M. K. Chung, P. Bubenik, and P. T. Kim. Persistence diagrams in cortical surface data. In Information Processing in Medical Imaging (IPMI) 2009, Lecture Notes in Computer Science, Vol. 5636, Springer, New York, 2009, pp. 386–397.
D. Cohen-Steiner, H. Edelsbrunner, and J. Harer. Stability of persistence diagrams. Disc. and Comp. Geom., 37 (2007), 103–120.
D Cohen-Steiner, H. Edelsbrunner, J. Harer, and Y. Mileyko. Lipschitz functions have \(L_p\)-stable persistence. Foundations of computational mathematics, 10 (2010), 127–139.
W. J. Conover. Practical Nonparametric Statistics, 3rd edn. Wiley, New York, 1999.
H. A. David and H. N. Nagaraja. Order Statistics. 3rd edition. Wiley, New York, 2003.
V. de Silva and G. Carlsson. Topological estimation using witness complexes. Proc. of Symp. on Point-Based Graph. (2004), pp. 157–166.
P. Diaconis, S. Holmes, M. Shahshahani. Sampling from a manifold. arXiv:1206.6913, 2011.
H. Edelsbrunner and J. Harer. Persistent homology—a survey. In Surveys on Discrete and Computational Geometry. Twenty Years Later, Contemp. Math., 453. Amer. Math. Soc., Providence, RI, 2008, pp. 257–282.
H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological persistence and simplification. Disc. and Comp. Geom., 28 (2002), 511–533.
P. Frosini and C. Landi. Size theory as a topological tool for computer vision. Pattern Recognition and Image Analysis 9 (1999), 596–603.
Free Software Foundation. http://www.gnu.org/software/gsl/, 2013
S. Gadgil and M. Krishnapur. Lipschitz correspondence between metric measure spaces and random distance matrices. Int. Math. Res. Not., no. 24 (2013), 5623–5644.
A. Greven, P. Pfaffelhuber, and A. Winter. Convergence in distribution of random metric measure spaces. Prob. Theo. Rel. Fields, 145 (2009), 285–322.
E. Gine, Z. Chen (2004) Another approach to asymptotics and bootstrap of randomly trimmed means. Ann. of the Institute of Stat. Math. 56:771–790
J.A. Hartigan. Consistency of singe linkage for high-density clusters. J. Amer. Statist. Assoc., 76 (1981), 388–394.
J.A. Hartigan. Statistical theory in clustering. J. Classification, 2 (1985), 63–76.
M. Kahle. Random geometric complexes. Disc. and Comp. Geometry, 45 (2011), 553–573.
M. Kahle and E. Meckes. Limit theorems for Betti numbers of random simplicial complexes. Homol. Homotopy Appl., 15 (2013), 343–374.
J. Latschev. Vietoris-Rips complexes of metric spaces near a closed Riemannian manifold. Archiv der Math., 77 (2001), 522–528.
F. Memoli. Gromov-Wasserstein distances and the metric approach to object matching. Foundations of Computational Mathematics 11 (2011), 417–487.
Y. Mileyko, S. Mukherjee, and J. Harer. Probability measures on the space of persistence diagrams. Inverse Probl. 27 (2011). doi:10.1088/0266-5611/27/12/124007.
V. Nanda. Perseus software. http://www.math.rutgers.edu/~vidit/perseus/index.html, 2013
P. Niyogi, S. Smale, and S. Weinberger. Finding the homology of submanifolds with high confidence from random samples. Disc. and Comp. Geometry, 39 (2008), 419–441.
D. Pollard. textitConvergence of Stochastic Processes. Springer, New York, 1984.
V. Robins. Toward computing homology from finite approximations. Topology Proceedings 24 (1999), 503–532.
Sturm K-T (2006) On the geometry of metric measure spaces. Acta Mathematica 196:65–131.
M. Tsao and J. Zhou. A nonparametric confidence interval for the trimmed mean. J. of Nonparametric Stat. 14 (2002), 665–673.
K. Turner, Y. Mileyko, S. Mukherjee, and J. Harer. Frechet means for distributions of persistence diagrams. arXiv:1206.2790.
A. V. van der Waart. Asymptotic Statistics. Cambridge University Press, Cambridge, UK, 1998.
J.H. van Hateren and A. van der Schaaf. Independent component filters of natural images compared with simple cells in primary visual cortex. Proc. R. Soc. Lond. B, 265 (1998), 359–366.
A. Zomorodian and G. Carlsson. Computing persistent homology. Disc. and Comp. Geometry, 33 (2005), 249–274.
Acknowledgments
The authors would like to thank Gunnar Carlsson and Michael Lesnick for useful comments, Rachel Ward for comments on a prior draft, and Olena Blumberg for help with background and for assistance with the analysis of the tightness of the main theorem. We would also like to thank the Institute for Mathematics and Its Applications for hospitality while revising this paper. The authors were supported in part by Defense Advanced Research Projects Agency (DARPA) Young Faculty Award N66001-10-1-4043.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Gunnar Carlsson.
Rights and permissions
About this article
Cite this article
Blumberg, A.J., Gal, I., Mandell, M.A. et al. Robust Statistics, Hypothesis Testing, and Confidence Intervals for Persistent Homology on Metric Measure Spaces. Found Comput Math 14, 745–789 (2014). https://doi.org/10.1007/s10208-014-9201-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10208-014-9201-4
Keywords
- Persistent homology
- Stability
- Robustness
- Barcode space
- Bottleneck metric
- Gromov–Prohorov metric
- Hypothesis testing
- Confidence interval
- Metric measure space