Skip to main content
Log in

Robust Statistics, Hypothesis Testing, and Confidence Intervals for Persistent Homology on Metric Measure Spaces

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

We study distributions of persistent homology barcodes associated to taking subsamples of a fixed size from metric measure spaces. We show that such distributions provide robust invariants of metric measure spaces and illustrate their use in hypothesis testing and providing confidence intervals for topological data analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. R. J. Adler, O. Bobrowski, and S. Weinberger. Crackle: The persistent homology of noise. arXiv:1301.1466, 2013.

  2. R. J. Adler, O. Bobrowski, M. S. Borman, E. Subag, and S. Weinberger. Persistent homology for random fields and complexes. Inst. Math. Stat. 6 (2010), 124–143.

  3. O. Bobrowski and R. J. Adler. Distance functions, critical points, and topology for some random complexes. arXiv:1107.4775, 2011.

  4. A. J. Blumberg and M. A. Mandell. Resampling methods for estimating persistent homology (in preparation).

  5. P. Bubenik. Statistical topology using persistence landscapes. arXiv:1207.6437, 2012.

  6. P. Bubenik and J. A. Scott. Categorication of persistent homology. arXiv:1205.3669, 2012.

  7. P. Bubenik, G. Carlsson, P. T. Kim, and Z.-M. Luo. Statistical topology via Morse theory persistence and nonparametric estimation. In Algebraic methods in statistics and probability II, Contemp. Math., 516. Amer. Math. Soc., Providence, RI, 2010, pp. 75–92.

  8. F. Cagliari, M. Ferri and P. Pozzi. Size functions from the categorical viewpoint. Acta Appl. Math. 67 (2001), 225–235.

    Article  MATH  MathSciNet  Google Scholar 

  9. C. Caillerie, F. Chazal, J. Dedecker, and B. Michel. Deconvolution for the Wasserstein metric and geometric inference. Electron. J. Statist. 5 (2011), 1394–1423.

    Article  MATH  MathSciNet  Google Scholar 

  10. G. Carlsson and V. De Silva. Zigzag persistence. Foundations of computational mathematics 10 (2010), 367–405.

    Article  MATH  MathSciNet  Google Scholar 

  11. G. Carlsson and F. Memoli. Characterization, stability, and convergence of hierarchical clustering methods. Journal of machine learning research 11 (2009), 1425–1470.

    MathSciNet  Google Scholar 

  12. G. Carlsson, T. Ishkhanov, V. de Silva., A. Zomorodian. On the local behavior of spaces of natural images. International journal of computer vision 76 (2008), 1–12.

    Article  Google Scholar 

  13. F. Chazal, D. Cohen-Steiner, L.J. Guibas, F. Memoli, S. Oudot. Gromov-Hausdorff stable signatures for shapes using persistence. Comput. Graph. Forum, 28 (2009), 1393–1403.

    Article  Google Scholar 

  14. F. Chazal, D. Cohen-Steiner, and Q. Merigot. Geometric inference for probability measures. Found. Comp. Math. 11 (2011), 733–751.

    Article  MATH  MathSciNet  Google Scholar 

  15. F. Chazal, V. De Silva, M. Glisse, and S. Oudot. The structure and stability of persistence modules. arXiv:1207.3674, 2012.

  16. F. Chazal, V. De Silva, and S. Oudot. Persistence stability for geometric complexes. Geometriae Dedicata (2013). doi:10.1007/s10711-013-9937-z.

  17. M. K. Chung, P. Bubenik, and P. T. Kim. Persistence diagrams in cortical surface data. In Information Processing in Medical Imaging (IPMI) 2009, Lecture Notes in Computer Science, Vol. 5636, Springer, New York, 2009, pp. 386–397.

  18. D. Cohen-Steiner, H. Edelsbrunner, and J. Harer. Stability of persistence diagrams. Disc. and Comp. Geom., 37 (2007), 103–120.

    Article  MATH  MathSciNet  Google Scholar 

  19. D Cohen-Steiner, H. Edelsbrunner, J. Harer, and Y. Mileyko. Lipschitz functions have \(L_p\)-stable persistence. Foundations of computational mathematics, 10 (2010), 127–139.

    Article  MATH  MathSciNet  Google Scholar 

  20. W. J. Conover. Practical Nonparametric Statistics, 3rd edn. Wiley, New York, 1999.

  21. H. A. David and H. N. Nagaraja. Order Statistics. 3rd edition. Wiley, New York, 2003.

  22. V. de Silva and G. Carlsson. Topological estimation using witness complexes. Proc. of Symp. on Point-Based Graph. (2004), pp. 157–166.

  23. P. Diaconis, S. Holmes, M. Shahshahani. Sampling from a manifold. arXiv:1206.6913, 2011.

  24. H. Edelsbrunner and J. Harer. Persistent homology—a survey. In Surveys on Discrete and Computational Geometry. Twenty Years Later, Contemp. Math., 453. Amer. Math. Soc., Providence, RI, 2008, pp. 257–282.

  25. H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological persistence and simplification. Disc. and Comp. Geom., 28 (2002), 511–533.

    Article  MATH  MathSciNet  Google Scholar 

  26. P. Frosini and C. Landi. Size theory as a topological tool for computer vision. Pattern Recognition and Image Analysis 9 (1999), 596–603.

    Google Scholar 

  27. Free Software Foundation. http://www.gnu.org/software/gsl/, 2013

  28. S. Gadgil and M. Krishnapur. Lipschitz correspondence between metric measure spaces and random distance matrices. Int. Math. Res. Not., no. 24 (2013), 5623–5644.

  29. A. Greven, P. Pfaffelhuber, and A. Winter. Convergence in distribution of random metric measure spaces. Prob. Theo. Rel. Fields, 145 (2009), 285–322.

    Article  MATH  MathSciNet  Google Scholar 

  30. E. Gine, Z. Chen (2004) Another approach to asymptotics and bootstrap of randomly trimmed means. Ann. of the Institute of Stat. Math. 56:771–790

    Article  MATH  MathSciNet  Google Scholar 

  31. J.A. Hartigan. Consistency of singe linkage for high-density clusters. J. Amer. Statist. Assoc., 76 (1981), 388–394.

    Article  MATH  MathSciNet  Google Scholar 

  32. J.A. Hartigan. Statistical theory in clustering. J. Classification, 2 (1985), 63–76.

    Article  MATH  MathSciNet  Google Scholar 

  33. M. Kahle. Random geometric complexes. Disc. and Comp. Geometry, 45 (2011), 553–573.

    Article  MATH  MathSciNet  Google Scholar 

  34. M. Kahle and E. Meckes. Limit theorems for Betti numbers of random simplicial complexes. Homol. Homotopy Appl., 15 (2013), 343–374.

  35. J. Latschev. Vietoris-Rips complexes of metric spaces near a closed Riemannian manifold. Archiv der Math., 77 (2001), 522–528.

    Article  MATH  MathSciNet  Google Scholar 

  36. F. Memoli. Gromov-Wasserstein distances and the metric approach to object matching. Foundations of Computational Mathematics 11 (2011), 417–487.

    Article  MATH  MathSciNet  Google Scholar 

  37. Y. Mileyko, S. Mukherjee, and J. Harer. Probability measures on the space of persistence diagrams. Inverse Probl. 27 (2011). doi:10.1088/0266-5611/27/12/124007.

  38. V. Nanda. Perseus software. http://www.math.rutgers.edu/~vidit/perseus/index.html, 2013

  39. P. Niyogi, S. Smale, and S. Weinberger. Finding the homology of submanifolds with high confidence from random samples. Disc. and Comp. Geometry, 39 (2008), 419–441.

    Article  MATH  MathSciNet  Google Scholar 

  40. D. Pollard. textitConvergence of Stochastic Processes. Springer, New York, 1984.

  41. V. Robins. Toward computing homology from finite approximations. Topology Proceedings 24 (1999), 503–532.

    MATH  MathSciNet  Google Scholar 

  42. Sturm K-T (2006) On the geometry of metric measure spaces. Acta Mathematica 196:65–131.

    Article  MATH  MathSciNet  Google Scholar 

  43. M. Tsao and J. Zhou. A nonparametric confidence interval for the trimmed mean. J. of Nonparametric Stat. 14 (2002), 665–673.

    Article  MATH  MathSciNet  Google Scholar 

  44. K. Turner, Y. Mileyko, S. Mukherjee, and J. Harer. Frechet means for distributions of persistence diagrams. arXiv:1206.2790.

  45. A. V. van der Waart. Asymptotic Statistics. Cambridge University Press, Cambridge, UK, 1998.

  46. J.H. van Hateren and A. van der Schaaf. Independent component filters of natural images compared with simple cells in primary visual cortex. Proc. R. Soc. Lond. B, 265 (1998), 359–366.

    Article  Google Scholar 

  47. A. Zomorodian and G. Carlsson. Computing persistent homology. Disc. and Comp. Geometry, 33 (2005), 249–274.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Gunnar Carlsson and Michael Lesnick for useful comments, Rachel Ward for comments on a prior draft, and Olena Blumberg for help with background and for assistance with the analysis of the tightness of the main theorem. We would also like to thank the Institute for Mathematics and Its Applications for hospitality while revising this paper. The authors were supported in part by Defense Advanced Research Projects Agency (DARPA) Young Faculty Award N66001-10-1-4043.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Blumberg.

Additional information

Communicated by Gunnar Carlsson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blumberg, A.J., Gal, I., Mandell, M.A. et al. Robust Statistics, Hypothesis Testing, and Confidence Intervals for Persistent Homology on Metric Measure Spaces. Found Comput Math 14, 745–789 (2014). https://doi.org/10.1007/s10208-014-9201-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-014-9201-4

Keywords

Mathematics Subject Classification

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy