Skip to main content

Visual tracking using convolutional features with sparse coding

  • Published:
Artificial Intelligence Review Aims and scope Submit manuscript

Abstract

Visual object tracking has become one of the most active research topics in computer vision, and it has been applied in several commercial applications. Several visual trackers have been presented in the last two decades. They target different tracking objectives. Object tracking from a real-time video is a challenging problem. Therefore, a robust tracker is required to consider many aspects of videos such as camera motion, occlusion, illumination effect, clutter, and similar appearance. In this paper, we propose an efficient object tracking algorithm that adaptively represents the object appearance using CNN-based features. A sparse measurement matrix is proposed to extract the compressed features for the appearance model without sacrificing the performance. We compress sample images of the foreground object and the background by the sparse matrix. When re-detection is needed, the tracking algorithm conducts an SVM classifier on the extracted features with online update in the compressed domain. A search strategy is proposed to reduce the computational burden in the detection step. Extensive simulations with a challenging video dataset demonstrate that the proposed tracking algorithm provides real-time tracking, while delivering substantially better tracking performance than those of the state-of-the-art techniques in terms of robustness, accuracy, and efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Abbass MY, Kim H (2018) Blind image separation using pyramid technique. EURASIP J Image Video Proc 2018(1)

  • Abbass MY, Kim H, Abdelwahab SA, Haggag SS, El-Rabaie EM, Dessouky MI, Abd Fathi E, El-Samie (2019) Image deconvolution using homomorphic technique. Signal, Image and Video Processing 13(4):703–709

    Article  Google Scholar 

  • Abbass MY, Kwon K, Kim N et al (2020a) A survey on online learning for visual tracking. Vis Comput. https://doi.org/10.1007/s00371-020-01848-y

    Article  Google Scholar 

  • Abbass MY, Kwon K, Kim N et al (2020b) Efficient object tracking using hierarchical convolutional features model and correlation filters. Vis Comput. https://doi.org/10.1007/s00371-020-01833-5

    Article  Google Scholar 

  • Abbass MY, Kwon K, Alam MS et al (2020c) Image super resolution based on residual dense CNN and guided filters. Multimed Tools Appl. https://doi.org/10.1007/s11042-020-09824-3

    Article  Google Scholar 

  • Abbass MY, Kwon Ki-Chul, Kim Nam, Abdelwahab Safey A, Abd Fathi E, El-Samie Ashraf AM, Khalaf (2020d) Utilization of deep convolutional and handcrafted features for object tracking. Optik 218:164926

  • Achlioptas D (2003) Database-friendly random projections: Johnsonlindenstrauss with binary coins. J Comput Syst Sci 66(4):671–687

    Article  Google Scholar 

  • Alam MS, Kwon K-C, Alam MA, Abbass MY, Imtiaz SM, Kim N (2020) Trajectory-based air-writing recognition using deep neural network and depth sensor. Sensors 20:376

    Article  Google Scholar 

  • Babenko B, Yang M-H, Belongie S (2011) Robust object tracking with online multiple instance learning. IEEE Trans Pattern Anal Mach Intell 33(8):1619–1632

    Article  Google Scholar 

  • Bertinetto L, Valmadre J, Golodetz S, Miksik O, Torr Philip HS (2016) Staple: complementary learners for real-time tracking. In: The IEEE conference on computer vision and pattern recognition (CVPR)

  • Candes E, Tao T (2006) Near-optimal signal recovery from random projections: Universal encoding strategies? IEEE Trans Inf Theory 52(12):5406–5425

    Article  MathSciNet  Google Scholar 

  • Danelljan M, Häger G, Khan FS, Felsberg M (2017) Discriminative scale space tracking. IEEE Trans Pattern Anal Mach Intell 39(8):1561–1575

    Article  Google Scholar 

  • Gundogdu E, Ozkan H, Alatan AA (2017) Extending correlation filter-based visual tracking by tree-structured ensemble and spatial windowing. IEEE Trans Image Process 26(11):5270–5283

    Article  MathSciNet  Google Scholar 

  • Henriques JF, Caseiro R, Martins P, Batista J (2012) Exploiting the circulant structure of tracking-by-detection with kernels. In: ECCV

  • Henriques JF, Caseiro R, Martins P, Batista J (2015) High-speed tracking with kernelized correlation filters. IEEE Trans Pattern Anal Mach Intell 37(3):583–596

    Article  Google Scholar 

  • Kalal Z, Mikolajczyk K, Matas J (2012) Tracking-learning-detection. IEEE Trans Pattern Anal Mach Intell 34(7):1409–1422

    Article  Google Scholar 

  • Li P, Hastie T, Church K (2006) Very sparse random projections. In: International conference on knowledge discovery and data mining, pp 287–296

  • Li H, Shen C, Shi Q (2011) Real-time visual tracking using compressive sensing. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 1305–1312

  • Li Y, Zhang Y, Xu Y, Wang J, Miao Z (2016) Robust scale adaptive kernel correlation filter tracker with hierarchical convolutional features. IEEE Signal Process Lett 23(8):1136–1140

    Article  Google Scholar 

  • Li X, Zhao H, Zhang L (2017) Pedestrian counting system based on multiple object detection and tracking. In: Liu D, Xie S, Li Y, Zhao D, El-Alfy ES (eds) Neural information processing. ICONIP 2017. Lecture notes in computer science, vol 10636, Springer, Cham. https://doi.org/10.1007/978-3-319-70090-8_9.

  • Liu L, Fieguth P (2012) Texture classification from random features. IEEE Trans Pattern Anal Mach Intell 34(3):574–586

    Article  Google Scholar 

  • Lukežič A, Vojíř T, Čehovin Z (2018) Discriminative correlation filter tracker with channel and spatial reliability. Int J Comput Vis. https://doi.org/10.1007/s11263-017-1061-3

    Article  MathSciNet  Google Scholar 

  • Ma C, Huang JB, Yang X, Yang MH (2015a) Long-term correlation tracking. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition

  • Ma C, Huang J-B, Yang X, Yang M-H (2015b) Hierarchical convolutional features for visual tracking. In: Proceedings of the IEEE computer society conference on computer vision and pattern recognition

  • Ma C, Huang J-B, Yang X, Yang M-H (2019) Robust visual tracking via hierarchical convolutional features. IEEE Trans Pattern Anal Mach Intell 41(11):2709–2723

    Article  Google Scholar 

  • Ross D, Lim J, Lin R, Yang M-H (2008) Incremental learning for robust visual tracking. Int J Comput Vis 77(1):125–141

    Article  Google Scholar 

  • Wang X, Chen D, Yang T, Hu B, Zhang J (2016) Action recognition based on object tracking and dense trajectories. In: IEEE international conference on automatica (ICA-ACCA). https://doi.org/10.1109/ICA-ACCA.2016.7778391.

  • Wright J, Yang A, Ganesh A, Sastry S, Ma Y (2009) Robust face recognition via sparse representation. IEEE Trans Pattern Anal Mach Intell 31(2):210–227

    Article  Google Scholar 

  • Zhang K, Zhang L, Yang M-H (2012) Real-time compressive tracking. In: Proceedings of European conference on computer vision, pp 864– 877

  • Zhang K, Zhang L, Yang M-H (2014) Fast compressive tracking. IEEE Trans Pattern Anal Mach Intell 36(10):2002–2015

    Article  Google Scholar 

  • Zhang J, Ma S, Sclaroff S (2014b) MEEM: robust tracking via multiple experts using entropy minimization. In: Proceedings of the European conference on computer vision

  • Zhang B, Li Z, Cao X, Ye Q, Chen C, Shen L, Jill R et al (2017) Output constraint transfer for kernelized correlation filter in tracking. IEEE Trans Syst Man Cybern Syst 47(4):693–703

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the MSIT (Ministry of Science and ICT), Korea, under the Grand Information Technology Research Center support program (IITP-2020-0-01462) and by the Korea Government, under the ITRC (Information Technology Research Center) support program (IITP-2020-2015-0-00448, IITP-2020-0-01846) supervised by the IITP (Institute for Information & communications Technology Promotion).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nam Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations'' (in PDF at the end of the article below the references.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbass, M.Y., Kwon, KC., Kim, N. et al. Visual tracking using convolutional features with sparse coding. Artif Intell Rev 54, 3349–3360 (2021). https://doi.org/10.1007/s10462-020-09905-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10462-020-09905-7

Keywords

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy