Abstract
Multi-robot systems are promising tools for many hazardous real-world problems. In particular, the practical application of swarm robotics was identified as one of the grand challenges of the next decade. As swarms enter the real world, they have to deal with the inevitable problems of hardware, software, and communication failure, especially for long-term deployments. Communication is a key element for effective collaboration, and the ability of robots to communicate is expressed by the swarm’s connectivity. In this paper, we analyze a set of techniques to assess, control, and enforce connectivity in the context of fallible robots. Past research has addressed the issue of connectivity but, for the most part, without making system reliability a constitutional part of the model. We introduce a controller for connectivity maintenance in the presence of faults and discuss the optimization of its parameters and performance. We validate our approach in simulation and via physical robot experiments.














Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
This definition of the edge-weights introduces a discontinuity in the control action that can be avoided introducing a smooth bump function (Do 2008). However, from an implementation viewpoint, the effect of the discontinuity can be made negligible by choosing a sufficiently small threshold \(\varDelta \).
To do so, we evaluated all the combinations of gains using the following values: [0.01, 0.25, 0.5, 0.75, 1., 1.5, 2.0].
References
Ajorlou, A., Momeni, A., & Aghdam, A. G. (2010). A class of bounded distributed control strategies for connectivity preservation in multi-agent systems. IEEE Transactions on Automatic Control, 55, 2828–2833.
Albert, R., Jeong, H., & Barabasi, A. L. (2000). Error and attack tolerance of complex networks. Nature, 406(6794), 378–382.
Avizienis, A., Laprie, J. C., Randell, B., & Landwehr, C. (2004). Basic concepts and taxonomy of dependable and secure computing. IEEE Transactions on Dependable and Secure Computing, 1(1), 11–33. https://doi.org/10.1109/TDSC.2004.2.
Bertrand, A., & Moonen, M. (2013). Distributed computation of the fiedler vector with application to topology inference in ad hoc networks. Signal Processing, 93(5), 1106–1117. https://doi.org/10.1016/j.sigpro.2012.12.002.
Biscani, F., Izzo, D., & Märtens, M. (2017). esa/pagmo2: pagmo 2.6. https://doi.org/10.5281/zenodo.1054110.
Brambilla, M., Ferrante, E., Birattari, M., & Dorigo, M. (2013). Swarm robotics: A review from the swarm engineering perspective. Swarm Intelligence, 7(1), 1–41. https://doi.org/10.1007/s11721-012-0075-2.
Cao, Y., & Ren, W. (2010). Distributed coordinated tracking via a variable structure approach—part I: Consensus tracking. part II: Swarm tracking. In Proceedings of the American Control Conference, (pp. 4744–4755).
Couceiro, M. S., Figueiredo, C. M., Rocha, R. P., & Ferreira, N. M. (2014). Darwinian swarm exploration under communication constraints: Initial deployment and fault-tolerance assessment. Robotics and Autonomous Systems, 62(4), 528–544. https://doi.org/10.1016/j.robot.2013.12.009.
Cvetkovic, D., & Rowlinson, P. (2004). Spectral graph theory. In L. W. Beineke, R. J. Wilson, & P. J. Cameron (Eds.), Topics in algebraic graph theory (pp. 88–112). Cambridge University Press.
Deb, K., & Deb, K. (2014). Multi-objective Optimization (pp. 403–449). Boston: Springer. https://doi.org/10.1007/978-1-4614-6940-7_15.
Di Lorenzo, P., & Barbarossa, S. (2014). Distributed estimation and control of algebraic connectivity over random graphs. IEEE Transactions on Signal Processing, 62(21), 5615–5628. https://doi.org/10.1109/TSP.2014.2355778.
Do, K. D. (2008). Formation tracking control of unicycle-type mobile robots with limited sensing ranges. IEEE Transactions on Control Systems Technology, 16, 527–538.
Elsayed, E. A. (2012). Reliability engineering (2nd ed.). Hoboken: Wiley Publishing.
Fiedler, M. (1973). Algebraic connectivity of graphs. Czechoslovak Mathematical Journal, 23(2), 298–305.
Gasparri, A., Sabattini, L., & Ulivi, G. (2017). Bounded control law for global connectivity maintenance in cooperative multi-robot systems. IEEE Transactions on Robotics, 33(3), 700–717. https://doi.org/10.1109/TRO.2017.2664883.
Ghedini, C., & Ribeiro, C. H. C. (2011). Rethinking failure and attack tolerance assessment in complex networks. Physica A: Statistical Mechanics and its Applications, 390(23–24), 4684–4691.
Ghedini, C., Secchi, C., Ribeiro, C.H.C., & Sabattini, L. (2015). Improving robustness in multi-robot networks. In: Proceedings of the IFAC Symposium on Robot Control (SYROCO), Salvador, Brazil.
Ghedini, C., Ribeiro, C.H.C., & Sabattini, L. (2016). A decentralized control strategy for resilient connectivity maintenance in multi-robot systems subject to failures. In Proceedings of the International Symposium on Distributed Autonomous Robotic Systems (DARS), London, UK.
Ghedini, C., Ribeiro, C., & Sabattini, L. (2017). Toward fault-tolerant multi-robot networks. Networks, 70(4), 388–400. https://doi.org/10.1002/net.21784.
Godsil, C., & Royle, G. (2001). Algebraic graph theory. Berlin: Springer.
Gupta, S., Ansari, A., Feng, S., & Mahlke, S. (2009). Adaptive online testing for efficient hard fault detection. In: 2009 IEEE International Conference on Computer Design, IEEE, (pp. 343–349). https://doi.org/10.1109/ICCD.2009.5413132.
Gutierrez, A., Campo, A., Dorigo, M., Donate, J., Monasterio-Huelin, F., & Magdalena, L. (2009). Open e-puck range and bearing miniaturized board for local communication in swarm robotics. In 2009 IEEE International Conference on Robotics and Automation, (pp. 3111–3116), https://doi.org/10.1109/ROBOT.2009.5152456.
He, Z., Liu, S., & Zhan, M. (2013). Dynamical robustness analysis of weighted complex networks. Physica A: Statistical Mechanics and its Applications, 392(18), 4181–4191.
Hsieh, M. A., Cowley, A., Kumar, V., & Talyor, C. J. (2008). Maintaining network connectivity and performance in robot teams. Journal of Field Robotics, 25(1), 111–131.
Hutter, F., Hoos, H. H., & Stützle, T. (2007). Automatic algorithm configuration based on local search. Aaai, 7, 1152–1157.
Ji, M., & Egerstedt, M. (2007). Distributed coordination control of multiagent systems while preserving connectedness. IEEE Transactions on Robotics, 23, 693–703.
Kantor, G., Singh, S., Peterson, R., Rus, D., Das, A., Kumar, V., et al. (2006). Distributed search and rescue with robot and sensor teams (pp. 529–538). Berlin: Springer. https://doi.org/10.1007/10991459_51.
Karnik, T., & Hazucha, P. (2004). Characterization of soft errors caused by single event upsets in cmos processes. IEEE Transactions on Dependable and Secure Computing, 1(2), 128–143. https://doi.org/10.1109/TDSC.2004.14.
Krupke, D., Ernestus, M., Hemmer, M., & Fekete, S.P. (2015). Distributed cohesive control for robot swarms: Maintaining good connectivity in the presence of exterior forces. In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), (pp. 413–420). https://doi.org/10.1109/IROS.2015.7353406
Manzano, M., Calle, E., Torres-Padrosa, V., Segovia, J., & Harle, D. (2013). Endurance: A new robustness measure for complex networks under multiple failure scenarios. Computer Networks, 57(17), 3641–3653.
Minelli, M., Kaufmann, M., Panerati, J., Ghedini, C., Beltrame, G., & Sabattini, L. (2018). Stop, think, and roll: Online gain optimization for resilient multi-robot topologies. In Proceedings of the International Symposium on Distributed Autonomous Robotic Systems (DARS), Boulder, CO.
Mosteo, A.R., Montano, L., & Lagoudakis, M.G. (2008). Multi-robot routing under limited communication range. In 2008 IEEE International Conference on Robotics and Automation, (pp. 1531–1536). https://doi.org/10.1109/ROBOT.2008.4543419
Notarstefano, G., Savla, K., Bullo, F., & Jadbabaie, A. (2006). Maintaining limited–range connectivity among second–order agents. In Proceedings of the American Control Conference, (pp. 2134–2129).
Panerati, J., Abdi, S., & Beltrame, G. (2014). Balancing system availability and lifetime with dynamic hidden markov models. In 2014 NASA/ESA Conference on Adaptive Hardware and Systems (AHS), (pp. 240–247). https://doi.org/10.1109/AHS.2014.6880183.
Panerati, J., Gianoli, L., Pinciroli, C., Shabah, A., Nicolescu, G., & Beltrame, G. (2018). From swarms to stars: Task coverage in robot swarms with connectivity constraints. In 2018 IEEE International Conference on Robotics and Automation (ICRA).
Pei, Y., Mutka, M.W., & Xi, N. (2010). Coordinated multi-robot real-time exploration with connectivity and bandwidth awareness. In 2010 IEEE International Conference on Robotics and Automation, (pp. 5460–5465). https://doi.org/10.1109/ROBOT.2010.5509803
Pinciroli, C., & Beltrame, G. (2016). Swarm-oriented programming of distributed robot networks. Computer, 49(12), 32–41.
Pinciroli, C., Trianni, V., O’Grady, R., Pini, G., Brutschy, A., Brambilla, M., et al. (2012). Argos: A modular, parallel, multi-engine simulator for multi-robot systems. Swarm Intelligence, 6(4), 271–295. https://doi.org/10.1007/s11721-012-0072-5.
Pinciroli, C., Lee-Brown, A., & Beltrame, G. (2016). A tuple space for data sharing in robot swarms. In Proceedings of the 9th EAI International Conference on Bio-inspired Information and Communications Technologies (Formerly BIONETICS), ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), BICT’15, ICST, Brussels, (pp. 287–294). https://doi.org/10.4108/eai.3-12-2015.2262503
Poonawala, H.A., & Spong, M.W. (2015). Decentralized estimation of the algebraic connectivity for strongly connected networks. In American Control Conference (ACC), IEEE, (pp. 4068–4073).
Rathnam, & Birk, A. (2011). Distributed communicative exploration under underwater communication constraints. In 2011 IEEE International Symposium on Safety, Security, and Rescue Robotics, (pp. 339–344). https://doi.org/10.1109/SSRR.2011.6106767
Roberts, J.F., Stirling, T.S., Zufferey, J.C., & Floreano, D. (2009). 2.5d infrared range and bearing system for collective robotics. In 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, (pp. 3659–3664). https://doi.org/10.1109/IROS.2009.5354263
Robuffo Giordano, P., Franchi, A., Secchi, C., & Bülthoff, H. H. (2013). A passivity-based decentralized strategy for generalized connectivity maintenance. The International Journal of Robotics Research, 32(3), 299–323.
Sabattini, L., Chopra, N., & Secchi, C. (2013a). Decentralized connectivity maintenance for cooperative control of mobile robotic systems. The International Journal of Robotics Research, 32(12), 1411–1423. https://doi.org/10.1177/0278364913499085.
Sabattini, L., Secchi, C., Chopra, N., & Gasparri, A. (2013b). Distributed control of multi-robot systems with global connectivity maintenance. IEEE Transactions on Robotics, 29(5), 1326–1332.
Sahai, T., Speranzon, A., & Banaszuk, A. (2012). Hearing the clusters of a graph: A distributed algorithm. Automatica, 48(1), 15–24. https://doi.org/10.1016/j.automatica.2011.09.019.
Şahin, E., Girgin, S., Bayindir, L., & Turgut, A. E. (2008). Swarm robotics (pp. 87–100). Berlin: Springer. https://doi.org/10.1007/978-3-540-74089-6_3.
Støy, K. (2001). Using situated communication in distributed autonomous mobile robotics. In Proceedings of the Seventh Scandinavian Conference on Artificial Intelligence, SCAI ’01, IOS Press, Amsterdam, (pp. 44–52). URL http://dl.acm.org/citation.cfm?id=645855.669785
Tardioli, D., Mosteo, A., Riazuelo, L., Villarroel, J., & Montano, L. (2010). Enforcing network connectivity in robot team missions. The International Journal of Robotics Research, 29(4), 460–480. https://doi.org/10.1177/0278364909358274.
Vasisht, D., Kumar, S., & Katabi, D. (2016). Decimeter-level localization with a single wifi access point. In 13th USENIX Symposium on Networked Systems Design and Implementation (NSDI 16), USENIX Association, Santa Clara, (pp. 165–178). URL https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/vasisht
Wasserman, S., Faust, K., & Iacobucci, D. (1994). Social network analysis : Methods and applications (structural analysis in the social sciences). Cambridge: Cambridge University Press.
Xiao, L., Boyd, S., & Kim, S. J. (2007). Distributed average consensus with least-mean-square deviation. Journal of Parallel and Distributed Computing, 67(1), 33–46. https://doi.org/10.1016/j.jpdc.2006.08.010.
Yang, P., Freeman, R. A., Gordon, G. J., Lynch, K. M., Srinivasa, S. S., & Sukthankar, R. (2010). Decentralized estimation and control of graph connectivity for mobile sensor networks. Automatica, 46(2), 390–396.
Acknowledgements
The authors would like to thank Québec’s Ministère des Relations Internationales et de la Francophonie (MRIF) and Italy’s Ministry of Foreign Affairs and International Cooperation (MAECI) for supporting SCMQI’s project QU17MO04 “Maintenance and Control of Distributed Robot and Sensor Network”.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This is one of the several papers published in Autonomous Robots comprising the Special Issue on Foundations of Resilience for Networked Robotic Systems.
Rights and permissions
About this article
Cite this article
Panerati, J., Minelli, M., Ghedini, C. et al. Robust connectivity maintenance for fallible robots. Auton Robot 43, 769–787 (2019). https://doi.org/10.1007/s10514-018-9812-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10514-018-9812-8