Skip to main content

Bilevel mixed-integer nonlinear programming for integrated scheduling in a supply chain network

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

An integrated scheduling problem under a make-to-order supply chain network is addressed. This problem considers integrated production and transportation scheduling with realistic supply chain features such as unrelated parallel shop and product batch-based transportation. The mathematical model for this problem is presented, which is formulated as a bilevel mixed-integer nonlinear program. A novel bilevel evolutionary optimization model based on memetic algorithm is proposed to resolve this problem because the problem is hard-to-tackle for mathematical programming techniques and traditional intelligent techniques. The effectiveness of the proposed optimization model is validated through a series of numerical experiments. The experimental results also confirmed that the proposed optimization model is superior to other three intelligent optimization models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Armentano, V., Shiguemoto, A., Lokketangen, A.: Tabu search with path relinking for an integrated production-distribution problem. Comput. Oper. Res. 38(8), 1199–1209 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Averbakh, I.: On-line integrated production-distribution scheduling problems with capacitated deliveries. Eur. J. Oper. Res. 200(2), 377–384 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bard, J., Nananukul, N.: The integrated production-inventory-distribution-routing problem. J. Sched. 12(3), 257–280 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ben-Ayed, O., Blair, C.: Computational difficulties of bilevel linear programming. Oper. Res. 38(3), 556–560 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beyer, H.-G., Schwefel, H.-P.: Evolution strategies: a comprehensive introduction. J. Nat. Comput. 1(1), 3–52 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bilgen, B., Celebi, Y.: Integrated production scheduling and distribution planning in dairy supply chain by hybrid modelling. Ann. Oper. Res. 211(1), 55–82 (2013)

    Article  MATH  Google Scholar 

  7. Cakici, E., Mason, S., Kurz, M.: Multi-objective analysis of an integrated supply chain scheduling problem. Int. J. Prod. Res. 50(10), 2624–2638 (2012)

    Article  Google Scholar 

  8. Cattaruzza, D., Absi, N., Feillet, D., Vidal, T.: A memetic algorithm for the multi-trip vehicle routing problem. Eur. J. Oper. Res. 236(3), 833–848 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, Z.: Integrated production and outbound distribution scheduling: review and extensions. Oper. Res. 58(1), 130–148 (2010)

    Article  MATH  Google Scholar 

  10. Chen, Z., Vairaktarakis, G.: Integrated scheduling of production and distribution operations. Manage. Sci. 51(4), 614–628 (2005)

    Article  MATH  Google Scholar 

  11. Delavar, M., Hajiaghaei-Keshteli, M., Molla-Alizadeh-Zavardehi, S.: Genetic algorithms for coordinated scheduling of production and air transportation. Expert Syst. Appl. 37(12), 8255–8266 (2010)

    Article  Google Scholar 

  12. Divsalar, A., Vansteenwegen, P., Sorensen, K., Cattrysse, D.: A memetic algorithm for the orienteering problem with hotel selection. Eur. J. Oper. Res. 237(1), 29–49 (2014)

    Article  MATH  Google Scholar 

  13. Fu, F.: Integrated scheduling and batch ordering for construction project. Appl. Math. Model. 38(2), 784–797 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Garcia, J.M., Lozano, S., Canca, D.: Coordinated scheduling of production and delivery from multiple plants. Robot. Comput.-Integr. Manuf. 20(3), 191–198 (2004)

    Article  Google Scholar 

  15. Geem, Z., Kim, J., Loganathan, G.: A new heuristic optimization algorithm: harmony search. Simulation 76(2), 60–68 (2001)

    Article  Google Scholar 

  16. Geismar, H., Laporte, G., Lei, L., Sriskandarajah, C.: The integrated production and transportation scheduling problem for a product with a short lifespan. INFORMS J. Comput. 20(1), 21–33 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Glover, F.: Tabu search-part 1. ORSA J. Comput. 1(2), 190–206 (1989)

    Article  MATH  Google Scholar 

  18. Guo, Z.X., Wong, W.K., Leung, S.Y.S.: A hybrid intelligent model for order allocation planning in make-to-order manufacturing. Appl. Soft Comput. 13(3), 1376–1390 (2013)

    Article  Google Scholar 

  19. Guo, Z., Zhang, D., Liu, H., He, Z., Shi, L.: Green transportation scheduling with pickup time and transport mode selections using a novel multi-objective memetic optimization approach. Transp. Res. Part D (2016). https://doi.org/10.1016/j.trd.2016.02.003

    Article  Google Scholar 

  20. Guo, Z.X., Ngai, E.W.T., Yang, C., Liang, X.: An RFID-based intelligent decision support system architecture for production monitoring and scheduling in a distributed manufacturing environment. Int. J. Prod. Econ. 159, 16–28 (2015)

    Article  Google Scholar 

  21. Holland, J.H.: Erratum: genetic algorithms and the optimal allocation of trials. SIAM J. Comput. 2(2), 88–105 (2006)

    Article  MATH  Google Scholar 

  22. Liu, S., Papageorgiou, L.G.: Multiobjective optimisation of production, distribution and capacity planning of global supply chains in the process industry. OMEGA-Int. J. Manag. Sci. 41(2), 369–382 (2013)

    Article  Google Scholar 

  23. Low, C., Li, R., Chang, C.: Integrated scheduling of production and delivery with time windows. Int. J. Prod. Res. 51(3), 897–909 (2013)

    Article  Google Scholar 

  24. Meisel, F., Kirschstein, T., Bierwirth, C.: Integrated production and intermodal transportation planning in large scale production-distribution-networks. Transp. Res. Part E 60(6), 62–78 (2013)

    Article  Google Scholar 

  25. Michalewicz, Z.: Genetic + data structures = evolution programs. Comput. Stat. Data Anal. 24(3), 372–373 (1999)

    Google Scholar 

  26. Moscato, P.: On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms. Caltech Concurrent Computation Program (report 826) (1989)

  27. Neri, F., Cotta, C.: Memetic algorithms and memetic computing optimization: a literature review. Swarm Evol. Comput. 2(1), 1–14 (2012)

    Article  Google Scholar 

  28. Piewthongngam, K., Pathumnakul, S., Homkhampad, S.: An interactive approach to optimize production-distribution planning for an integrated feed swine company. Int. J. Prod. Econ. 142(2), 290–301 (2013)

    Article  Google Scholar 

  29. Sawik, T.: Monolithic versus hierarchical approach to integrated scheduling in a supply chain. Int. J. Prod. Res. 47(21), 5881–5910 (2009)

    Article  MATH  Google Scholar 

  30. Selvarajah, E., Zhang, R.: Supply chain scheduling to minimize holding costs with outsourcing. Ann. Oper. Res. 217(1), 479–490 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  31. Steinrucke, M.: An approach to integrate production-transportation planning and scheduling in an aluminium supply chain network. Int. J. Prod. Res. 49(21), 6559–6583 (2011)

    Article  Google Scholar 

  32. Tang, D., Dai, M., Salido, M.A., Giret, A.: Energy-efficient dynamic scheduling for a flexible flow shop using an improved particle swarm optimization. Comput. Ind. 81, 82–95 (2015)

    Article  Google Scholar 

  33. Viergutz, C., Knust, S.: Integrated production and distribution scheduling with lifespan constraints. Ann. Oper. Res. 213(1), 293–318 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wang, X., Cheng, T.C.E.: Machine scheduling with an availability constraint and job delivery coordination. Naval Res. Logist. 54(1), 11–20 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Xu, X., Zhang, W., Li, N., Xu, H.: A bi-level programming model of resource matching for collaborative logistics network in supply uncertainty environment. J. Frankl. Inst. 352(9), 3873–3884 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zegordi, S., Abadi, I., Nia, M.: A novel genetic algorithm for solving production and transportation scheduling in a two-stage supply chain. Comput. Ind. Eng. 58(3), 373–381 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This paper is supported partly by the National Natural Science Foundation of China under Grant Nos. 71532007, 71131006 and 71172197.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming Ye.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Appendix

Appendix

See Tables 7, 8, and 9 in Appendix.

Table 7 Information of order groups in experiment 1
Table 8 Information of order groups in experiment 2
Table 9 Information of order groups in experiment 3

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Guo, F., Luo, L. et al. Bilevel mixed-integer nonlinear programming for integrated scheduling in a supply chain network. Cluster Comput 22 (Suppl 6), 15517–15532 (2019). https://doi.org/10.1007/s10586-018-2673-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-018-2673-2

Keywords

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy