Abstract
A numerical method for linear quadratic optimal control problems with pure state constraints is analyzed. Using the virtual control concept introduced by Cherednichenko et al. (Inverse Probl. 24:1–21, 2008) and Krumbiegel and Rösch (Control Cybern. 37(2):369–392, 2008), the state constrained optimal control problem is embedded into a family of optimal control problems with mixed control-state constraints using a regularization parameter α>0. It is shown that the solutions of the problems with mixed control-state constraints converge to the solution of the state constrained problem in the L 2 norm as α tends to zero. The regularized problems can be solved by a semi-smooth Newton method for every α>0 and thus the solution of the original state constrained problem can be approximated arbitrarily close as α approaches zero. Two numerical examples with benchmark problems are provided.
Similar content being viewed by others
References
Bryson, A.E., Ho, Y.-C.: Applied Optimal Control. Hemisphere, Washington (1975)
Cherednichenko, S., Krumbiegel, K., Rösch, A.: Error estimates for the Lavrientiev regularization of elliptic optimal control problems. Inverse Probl. 24, 1–21 (2008)
Gerdts, M.: Representation of the Lagrange multipliers for optimal control problems subject to differential-algebraic equations of index two. J. Optim. Theory Appl. 130(2), 231–251 (2006)
Gerdts, M.: Local minimum principles for optimal control problems subject to differential-algebraic equations of index 2. J. Optim. Theory Appl. 130(3), 441–460 (2006)
Gerdts, M.: Global convergence of a nonsmooth Newton’s method for control-state constrained optimal control problems. SIAM J. Optim. 19(1), 326–350 (2008). A corrected version can be found on http://www.mathematik.uni-wuerzburg.de/~gerdts/erratum_SIAM_19_1_2008_326-350_full.pdf
Hartl, R.F., Sethi, S.P., Vickson, R.G.: A survey of the maximum principles for optimal control problems with state constraints. SIAM Rev. 37(2), 181–218 (1995)
Kim, J.-H.R.: Optimierungsmethoden und Sensitivitätsanalyse für optimale bang-bang Steuerungen mit Anwendungen in der nichtlinearen Optik. PhD thesis, Fachbereich Mathematik und Informatik, Universität Münster (2002)
Krumbiegel, K., Rösch, A.: On the regularization error of state constrained Neumann control problems. Control Cybern. 37(2), 369–392 (2008)
Natanson, I.P.: Theorie der Funktionen einer reellen Veränderlichen. Deutsch, Zürich (1975)
Author information
Authors and Affiliations
Corresponding author
Additional information
The authors are supported by DFG grant GE 1163/5-1.
Rights and permissions
About this article
Cite this article
Gerdts, M., Hüpping, B. Virtual control regularization of state constrained linear quadratic optimal control problems. Comput Optim Appl 51, 867–882 (2012). https://doi.org/10.1007/s10589-010-9353-3
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10589-010-9353-3