Abstract
We consider parameter optimization problems which are subject to constraints given by parametrized partial differential equations. Discretizing this problem may lead to a large-scale optimization problem which can hardly be solved rapidly. In order to accelerate the process of parameter optimization we will use a reduced basis surrogate model for numerical optimization. For many optimization methods sensitivity information about the functional is needed. In the following we will show that this derivative information can be calculated efficiently in the reduced basis framework in the case of a general linear output functional and parametrized evolution problems with linear parameter separable operators. By calculating the sensitivity information directly instead of applying the more widely used adjoint approach we can rapidly optimize different cost functionals using the same reduced basis model. Furthermore, we will derive rigorous a-posteriori error estimators for the solution, the gradient and the optimal parameters, which can all be computed online. The method will be applied to two parameter optimization problems with an underlying advection-diffusion equation.




Similar content being viewed by others
References
Amsallem, D., Deolalikar, S., Gurrola, F., Farhat, C.: Model predictive control under coupled fluid-structure constraints using a database of reduced-order models on a tablet. In: AIAA Fluid Dynamics and Co-located Conferences and Exhibit (2013)
Antil, H., Heinkenschloss, M., Hoppe, R., Sorensen, D.: Domain decomposition and model reduction for the numerical solution of PDE constrained optimization problems with localized optimization variables. Comput. Vis. Sci. 13, 249–264 (2010)
Antoulas, A.: An overview of approximation methods for large-scale dynamical systems. Annu. Rev. Control 29, 181–190 (2005)
Barrault, M., Maday, Y., Nguyen, N., Patera, A.: An ’empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations. C. R. Math. Acad. Sci. Paris Ser. I 339, 667–672 (2004)
Biegler, L.: Large-Scale PDE-Constrained Optimization. Springer, Heidelberg (2003)
Borggaard, J., Burns, J.: A PDE sensitivity equation method for optimal aerodynamic design. J. Comput. Phys. 136, 366–384 (1997)
Borggaard, J., Burns, J., Surana, A., Zietsman, L.: Control, estimation and optimization of energy efficient buildings. In: American Control Conference (2009)
Bui-Thanh, T., Willcox, K., Ghattas, O.: Model reduction for large-scale systems with high-dimensional parametric input space. SIAM J. Sci. Comput. 30(6), 3270–3288 (2008). doi:10.1137/070694855
Caloz, G., Rappaz, J.: Numerical analysis for nonlinear and bifurcation problems. Techiques of Scientific Computing (Part 2), vol. V. Elsevier, Amsterdam (1997)
Cea, J.: Conception optimale ou identification de formes calcul rapide de la derive directionelle de la fonction cout. Math. Model. Numer. Anal. 20(3), 371–402 (1986)
Dede, L.: Reduced basis method and a posteriori error estimation for parametrized optimal control problems with control constraints. J. Sci. Comput. 50(2), 287–305 (2011)
Dihlmann, M.: Adaptive Reduced Basis Method for Evolution Problems with Application in Parameter Optimization and State Estimation. Ph.D. thesis, University of Stuttgart (2014) (in preparation)
Dihlmann, M., Drohmann, M., Haasdonk, B.: Model reduction of parametrized evolution problems using the reduced basis method with adaptive time-partitioning. In: Proceedings of ADMOS 2011 (2011)
Dihlmann, M., Haasdonk, B.: Certified nonlinear parameter optimization with reduced basis surrogate models. Technical report, University of Stuttgart (Accepted by PAMM) (2013)
Geiger, C., Kanzow, C.: Numerische Verfahren zur Lösung unrestringierter Optimierungsaufgaben. Springer, Berlin (1999)
Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)
Grepl, M.: Reduced-basis approximations and a posteriori error estimation for parabolic partial differential equations. Ph.D. thesis, Massachusetts Institute of Technology (2005)
Grepl, M., Kärcher, M.: Reduced basis a posteriori error bounds for parametrized linear-quadratic elliptic optimal control problems. C. R. Acad. Sci. Paris Ser. 1 349, 873–877 (2011)
Grepl, M., Patera, A.: A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations. Math. Model. Numer. Anal. 39(1), 157–181 (2005)
Griesse, R., Vexler, B.: Numerical sensitivity analysis for the quantity of interest in PDE-constrained optimization. SIAM J. Sci. Comput. 29(1), 22–48 (2007)
Haasdonk, B.: Convergence rates of the POD-Greedy method. Math. Model. Numer. Anal. 47, 859–873 (2013). doi:10.1051/m2an/2012045
Haasdonk, B., Dihlmann, M., Ohlberger, M.: A training set and multiple basis generation approach for parametrized model reduction based on adaptive grids in parameter space. Math. Comput. Model. Dyn. 17, 423–442 (2012)
Haasdonk, B., Ohlberger, M.: Adaptive basis enrichment for the reduced basis method applied to finite volume schemes. In: Proceedings of 5th International Symposium on Finite Volumes for Complex Applications, pp. 471–478 (2008)
Haasdonk, B., Ohlberger, M.: Reduced basis method for finite volume approximations of parametrized linear evolution equations. Math. Model. Numer. Anal. 42(2), 277–302 (2008)
Haasdonk, B., Ohlberger, M., Rozza, G.: A reduced basis method for evolution schemes with parameter-dependent explicit operators. Electron. Trans. Numer. Anal. 32, 145–161 (2008)
Hasenauer, J., Löhning, M., Khammash, M., Allgöwer, F.: Dynamical optimization using reduced order models: a method to guarantee performance. J. Process Control 22, 1490–1501 (2012)
Hay, A., Akhtar, I., Borggaard, J.: On the use of sensitivity analysis in model reduction to predict flows for varying inflow conditions. Int. J. Numer. Methods Fluids 68(1), 122–134 (2011)
Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with PDE Constraints, Mathematical Modelling: Theory and Applications, vol. 23. Springer, New York (2009)
Hinze, M., Tröltzsch, F.: Discrete concepts versus error analysis in PDE-constrained optimization. GAMM-Mitteilungen 33, 148–162 (2010)
Huynh, D., Rozza, G., Sen, S., Patera, A.: A successive constraint linear optimization method for lower bounds of parametric coercivity and inf-sup stability constants. C. R. Math. Acad. Sci. Paris Ser. I 345, 473–478 (2007). doi:10.1016/j.crma.2007.09.019
Iapichino, L., Ulbrich, S., Volkwein, S.: Multiobjective PDE-constrained Optimization Using the Reduced-Basis Method. Technical report, University of Konstanz (2013)
Jarre, F., Stoer, J.: Optimierung. Springer, Berlin (2004)
Kantorovich, L.: On Newton’s method. Trudy Matematicheskogo Instituta 28(104), 144 (1949)
Lass, O.: Reduced order modeling and parameter identification for coupled nonlinear PDE systems. Ph.D. thesis, University of Konstanz (2014)
Lassila, T., Rozza, G.: Parametric free-form shape design with PDE models and reduced basis method. Comput. Methods Appl. Mech. Eng. 199, 1583–1592 (2010)
Lewis, R., Patera, A., Peraire, J.: A posteriori finite element bounds for sensitivity derivatives of partial-differential-equation outputs. Finite Elem. Anal. Des. 34, 271–290 (2000)
Nguyen, N., Rozza, G., Huynh, D., Patera, A.: Reduced Basis Approximation and a Posteriori Error Estimation for Parametrized Parabolic PDEs; Application to Real-time Bayesian Parameter Estimation. Wiley, Hoboken (2010)
Nocedal, J., Wright, S.: Numerical Optimization. Springer Series in Operations Research and Finaincial Engineering. Springer, Heidelberg (2006)
Oliveira, I., Patera, A.: Reduced-basis techniques for rapid reliable optimization of systems described by affinely parametrized coercive elliptic partial differential equations. Optim. Eng. 8, 43–65 (2007)
Plato, R.: Concise Numerical Mathematics, Graduate Studies in Mathematics, vol. 57. American Matheatical Society, Providence (2003)
Quarteroni, A., Rozza, G., Quaini, A.: Reduced basis methods for optimal control of advection-diffusion problems. In: Advances in Numerical Mathematics, MOX 79, pp. 193–216 (2006)
Rozza, G., Huynh, D., Patera, A.: Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations: application to transport and continuum mechanics. Arch. Comput. Methods Eng. 15(3), 229–275 (2008)
Sachs, E., Volkwein, S.: POD-Galerkin approximations in PDE-constrained optimization. GAMM-Mitteilungen 33(2), 194–208 (2010)
Tröltzsch, F., Volkwein, S.: POD a-posteriori error estimation for linear-quadratic optimal control problems. Comput. Optim. Appl. 44(1), 83–115 (2009)
Veroy, K., Prud’homme, C., Rovas, D.V., Patera, A.T.: A posteriori error bounds for reduced-basis approximation of parametrized noncoercive and nonlinear elliptic partial differential equations. In: Proceedings of 16th AIAA Computational Fluid Dynamics Conference. Paper 2003-3847 (2003)
Zahr, M., Farhat, C.: Progressive construction of a parametric reduced-order model for PDE-constrained optimization. Technical report, arXiv:1407.7618 (2014)
Acknowledgments
The authors would like to thank the German Research Foundation (DFG) for financial support of the Project within the Cluster of Excellence in Simulation Technology (EXC 310/1) at the University of Stuttgart and the Baden-Württemberg Stiftung gGmbH. The authors would also like to thank the reviewers for their very detailed comments helping us to improve the present manuscript.
Author information
Authors and Affiliations
Corresponding author
Appendix: Matrices for the error estimator of \(\partial _{\mu _i}u_N\)
Appendix: Matrices for the error estimator of \(\partial _{\mu _i}u_N\)
Rights and permissions
About this article
Cite this article
Dihlmann, M.A., Haasdonk, B. Certified PDE-constrained parameter optimization using reduced basis surrogate models for evolution problems. Comput Optim Appl 60, 753–787 (2015). https://doi.org/10.1007/s10589-014-9697-1
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10589-014-9697-1